
Adjusting for Measurement Error and Missing Data Using Bayesian
Statistics

Jose Pina-Sánchez and Albert Varela

09 January, 2024

Introduction
This is the third practical exercise from day 2 of the short course ‘Adjustment Methods for Data Quality
Problems: Missing Data, Measurement Error, and Misclassification.’ You can download the associated lecture
slides and data here: https://github.com/jmpinasanchez/measurement

This workshop is a first approximation to measurement error and missing data adjustments using Bayesian
statistics. We will demonstrate the unparalleled flexibility of Bayesian statistics by undertaking a couple
of adjustments that we would not be able to carry out using any of the methods we have seen so far. In
the first exercise we will see how we can adjust for all the forms of measurement error seen in police data
simultaneously. In the second exercise we will see how we can easily account for both missing data and
measurement error in our data by including imputation and measurement models.

Downloading and installing JAGS and rjags

We are going to use the package rjags to call the software JAGS from R. There are other great packages to
run Bayesian statistics that are faster (see for example rstan), maintained and updated more regularly, or
perhaps simpler to use (blavaan). However, we chose to work with rjags since out of the five packages that
we considered (rjags, rstan, Brugs, brms, blavaan), rjags is the one that we find to offer the necessary
flexibility to specify the different types of measurement error mechanisms seen in police data (multiplicative,
systematic, random, and differential), while remaining relatively intuitive.

First we need to install JAGS. You can download the Windows and Mac installer for JAGS from
https://sourceforge.net/projects/mcmc-jags. Simply download and run the latest installer to install JAGS on
your machine. In that same website you can also find a short workshop introducing JAGS written by Martyn
Plumer, which you might find useful if you want to keep learning about JAGS and Bayesian statistics.

The second step is to install rjags so we can call JAGS directly from R.
install.packages("rjags")

We can now proceed to load the package with the library command. We also use set.seed to ensure
reproducibility, and we are ready to go.
library(rjags)

Warning: package 'rjags' was built under R version 4.3.2
set.seed(5)

Exercise 1. Accounting for multiple forms of measurement error
As we saw in our first workshop, we cannot retrieve the true values of a variable prone to measurement error
by simply simulating the measurement error process. This represents a key limitation of methods like rcme,
and the adjustment of police recorded crime data in particular, since in addition to underreported crimes

1

https://github.com/jmpinasanchez/measurement

(systematic errors), we expect to see unexplained (random) inconsistencies in crime recording between and
within police forces. Random errors might not be the most damaging types of errors present in police data,
however, it is unquestionable that not been able to provide a fully accurate description of the measurement
error mechanisms present in police data limits the precision of our adjustments.

Furthermore, when the number of recorded crimes in a given area, at a given period, stems from low level
geographical units (such as LSOAs or neighbourhoods) and/or short periods of time (such as days or months),
chances are that a good share of the area-period observations will be 0s (especially so when we are considering
more serious and, therefore, less frequent crimes). When that is the case, we won’t be able to retrieve the
true extent of crime by simulating the measurement error process. This is because we assumed multiplicative
errors, so the simulated error will be made artificially equal to zero in those person-period observations when
no crimes were recorded (0 · U = 0).

We are going to see how we can overcome both of these limitations using adjustments based on Bayesian
statistics. The key idea behind this approach is to estimate simultaneously the outcome model of interest
(where we explore the causes or consequences of crime) and the measurement error model (where we describe
how well does police data reflect the true extent of crime). This differs from the rcme approach, which is
based on estimating the measurement error model first, so we can adjust the crime rates accordingly, which
are then used in the outcome model in a separate stage.

We will illustrate the implementation of our adjustments using a simple dataset exploring the effect of
education on crime. This topic has been studied at great length, especially within the field of Economics
of Crime (Groot & van den Brink, 2010; Lochner, 2020). Most studies in the literature point at higher
education levels associated with lower crime rates, and a few of them seek to adjust for measurement error
using methods like instrumental variables and generalised method of moments (Buonanno & Montolio, 2008;
Fajnzylber et al., 2002). These methods can help to partially adjust for the impact of systematic and random
errors, however, as far as we are aware, they cannot be used to adjust for differential errors (where the
measurement error is associated with the predictors or outcome of interest).

This problem should not be overlooked, since, as demonstrated by Buil-Gil et al. (2020), crime underreporting
tends to be more pronounced in areas with low education levels. In this exercise we will see how Bayesian
adjustments afford a remarkable degree of flexibility with which to explore the impact of practically any type
of measurement error mechanism that we could suspect to be affecting our data, including differential errors.

Importing, cleaning and exploring the data

All the analyses included in this workshop are based on the same data: the number of violent crimes
recorded in 2011, across the close to five thousand Lower Super Output Areas (LSOAs) that compose Greater
London; which we seek to explain using three covariates derived from the 2011 Census: (i) the percentage
of residents with no qualification, our focal variable, and two other controls, (ii) the median house price,
and (iii) the number of residents in the area. This dataset, together with more than a hundred other area
characteristics from the Census and different crime types from data.police.uk, is available in the data section
of the Recounting Crime website, under Census and police data.

I have also uploaded this dataset in the github repository for the measurement course. You can download
the dataset or import it directly into R calling it from the github repository. We then proceed to drop all the
variables that we will not use in our examples, and simplify the name of the variables we keep.
#Importing the data.
data = read.csv(
'london_crimes_census_2011.csv')
#Selecting variables.
data = data[c("Mid.year.Population.Estimates.All.Ages.2011",

"House.Prices.Median.Price.2011", "Qualifications...No.qualifications.2011",
"VIOLENCE_WITH_INJURY_2011")]

#Renaming variables.
names(data) = c("residents", "price", "noqual", "violence")

2

https://recountingcrime.wordpress.com/data/
https://github.com/jmpinasanchez/measurement

We can now take a quick look at the four variables considered.
#Exploratory analysis.
head(data)

residents price noqual violence
1 1731 240500 18 10
2 1417 212000 15 59
3 1569 140000 21 11
4 1798 226500 19 40
5 2889 151475 12 90
6 1655 214000 18 8
summary(data)

residents price noqual violence
Min. : 997 Length:4829 Min. : 1 Min. : 0
1st Qu.:1534 Class :character 1st Qu.:13 1st Qu.: 5
Median :1660 Mode :character Median :18 Median : 9
Mean :1697 Mean :18 Mean : 13
3rd Qu.:1822 3rd Qu.:23 3rd Qu.: 16
Max. :4973 Max. :43 Max. :546
hist(data$violence, main = NULL)

data$violence

F
re

qu
en

cy

0 100 200 300 400 500

0
30

00

Our outcome variable follows a typical count data distribution, left-censored at zero, and in this case heavily
right-skewed, including some large outliers. Since in this exercise we are only trying to provide an illustration
about how to use Bayesian statistics to adjust for measurement error, and given that strong outliers tend to
hinder convergence (more on this below), we will simply drop the 13 LSOAS which recorded more than 100
violent crime counts.

Notice as well how each variable is measured in a different unit. To facilitate model convergence we will
redress this by expressing the number of residents in thousands, the median house price in hundreds of
thousands (of pounds), and the percentage of residents with no qualification in tens of percentage points. For
the same reason of facilitating convergence, but also to facilitate the interpretation of our findings, we center
each explanatory variable around their mean. We will also set the median house price as a numeric variable,
and remove the 13 missing cases which turned it into a character variable when we imported it.
#Transforming covariates to facilitate convergence.
data$residents = data$residents/1000
data$residents = data$residents - mean(data$residents)
data$price = as.numeric(data$price)/100000

3

#Dropping 13 cases with missing values for price.
data = na.omit(data)
data$price = data$price - mean(data$price)
data$noqual = data$noqual/10
data$noqual = data$noqual - mean(data$noqual)
#Dropping outliers.
data = data[which(data$violence<=100),]
#Checking that the transformations were carried out as expected.
summary(data)

residents price noqual violence
Min. :-0.7 Min. :-2.7 Min. :-1.68 Min. : 0
1st Qu.:-0.2 1st Qu.:-1.1 1st Qu.:-0.52 1st Qu.: 5
Median : 0.0 Median :-0.6 Median :-0.02 Median : 9
Mean : 0.0 Mean : 0.0 Mean : 0.00 Mean : 12
3rd Qu.: 0.1 3rd Qu.: 0.4 3rd Qu.: 0.50 3rd Qu.: 16
Max. : 3.3 Max. :30.5 Max. : 2.55 Max. :100
hist(data$violence, main = NULL)

data$violence

F
re

qu
en

cy

0 20 40 60 80 100

0
20

00

We now proceed to estimate our outcome model, so we can estimate the association between percentage of
residents with no qualification and counts of violent crime conditional on number of residents and median
house price. To do so we are going to estimate a Poisson model using the glm command. We are going to call
this model naive_poisson_freq because we are not adjusting for measurement error yet, hence naive, and
because we are using frequentist statistics, hence freq.

As a side note, notice how we cannot simply log-transform violent crime and regress it using a linear model
since ln(0) is undefined. Other types of transformations are commonly used to ‘normalise’ right-skewed
variables including zeros, such as

√
X or ln(X + 1). These can be useful when the research question seeks to

predict, but when we are trying to explain, using such transformations should be discouraged as they hinder
interpretability of findings.
#Naive model using frequentist statistics.
naive_poisson_freq = glm(violence ~ noqual + price + residents, data=data,

family="poisson")
summary(naive_poisson_freq)

##
Call:
glm(formula = violence ~ noqual + price + residents, family = "poisson",

4

data = data)
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.44081 0.00434 561.9 <2e-16 ***
noqual 0.11024 0.00686 16.1 <2e-16 ***
price -0.05514 0.00312 -17.6 <2e-16 ***
residents 0.91292 0.01186 77.0 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 39920 on 4802 degrees of freedom
Residual deviance: 33330 on 4799 degrees of freedom
AIC: 52328
##
Number of Fisher Scoring iterations: 5

The three explanatory variables are significant, and point in the expected direction. Violent crime is negatively
associated with the median house price, and positively associated with the number of residents and the
percentage of those residents with no qualification. Specifically, for every ten percentage point increase in
residents without a qualification we estimate a 12% increase in violent crime, holding the number of residents
and house price constant. This figure can be derived by taking the exponential of the regression coefficient
for percentage of residents with no qualification, which gives us its rate ratio.
#Calculating the rate ratio for the percentage of residents with no qualification.
exp(naive_poisson_freq$coefficients[2])

noqual
1.1

Bayesian modelling in rjags

We start our Bayesian adjustments by replicating the naive Poisson model that we estimated above, only now
we use Bayesian statistics. We will go over this Bayesian specification rather quickly, if you want to know
more about count models in JAGS we recommend the following tutorial from George Derpanopoulos (2016).
To estimate a model in JAGS we need to undertake five steps: 1) specify the model using rjags syntax
(including prior distributions); 2) connect the model to the dataset we are using in R; 3) run the MCMC
sampler; 4) check that the model has converged; and 5) extract and analyse our results.

The following code can be used to specify our naive Poisson model in JAGS.
#Naive Poisson model.
model_string = "
model {

Likelihood function
Outcome model (Poisson)

for (i in 1:4803) {
violence[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0 + beta1*noqual[i] + beta2*price[i] + beta3*residents[i]

}
Priors

beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)

5

https://georgederpa.github.io/teaching/countModels.html

}
"

Notice how we divide the code in two parts, a likelihood function (i.e. the conditional probability of each of
the parameters included in our Poisson model given the data), and prior probabilities for all those parameters
(i.e. our prior knowledge about the value of those parameters). Following Bayes theorem these two probabilities
are combined to derive the posterior distribution for each of the parameters included in our model (estimated
via MCMC algorithms), from which we will draw our inferences.

Under the model we have specified above, we seek to estimate four parameters, three slopes (beta1, beta2 and
beta3), one for each explanatory variable included in the model, and one intercept (beta0). Notice how we
use non-informative prior probabilities for each of these parameters (in this case extremely dispersed normal
distributions with mean zero). Such non-informative (also known as diffuse) ‘priors’ are used to reflect that
we have no prior knowledge about the value of the parameters to be estimated, which is also the position
that we take by default when we use frequentist statistics.

Next we connect the model code we have just created with the data we are using in R. In addition, we
determine that we want two different MCMC chains (these chains represent the computational technique used
to approximate the posterior distribution of the parameters to be estimated). We use more than one chain to
assess whether the chains have converged (i.e. whether the chains have sufficiently explored the parameter
space and have reached a stable distribution that approximates the posterior distribution of interest). We
also provide sensible initial values for each of the parameters to be estimated to facilitate convergence - by
‘sensible’ we mean values that could be expected to fall within the parameter space.
#Providing sensible initial values.
inits = list(beta0=1, beta1=0.1, beta2=-0.1, beta3=0.1)
#Connecting the model specification with our data.
model = jags.model(textConnection(model_string), data=data, inits=inits, n.chains=2)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 4803
Unobserved stochastic nodes: 4
Total graph size: 31732
##
Initializing model

At this point we proceed to run the MCMC sampler. Here we have to decide how many iterations of our
MCMC chains we want to use and how many we want to discard. The discarding process is defined through
the n.burnin option. We want to make sure that we discard initial values of the estimation process, where the
MCMC chains have not yet converged, and therefore they are not yet sampling from the posterior distribution
that we seek to explore.

The sample size with which we estimate our posterior distributions is determined by the number provided in
n.iter. The bigger this value, the more precisely we will be able to define the posterior distributions, but
also the longer the sampling/estimation process will take. For relatively simple generalised linear models like
this one, the choice n.iter = 2000, n.burnin = 500, works fine.
#Determining the sample size that we will rely upon to estimate the posterior
#distributions of the parameters included in our model.
samples_naive = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3"), n.iter=2000, n.burnin=500, n.chains=2)

The best way to be sure that we have a sufficient number of iterations, is to check the convergence of the
chains we have run. Below we do so visually, by checking that each of the two chains (represented in black

6

and red) are drawing values from the same range and mixing recurrently, which indicates that both chains are
appropriately exploring the same posterior distributions that week to estimate. These posterior distributions
estimated using the number of iterations saved are also shown in the output (they are called Density of. . .).

We can also test for convergence formally using Gelman-Rubin Statistic. This statistic provides a numerical
value of convergence. It is constructed by comparing the variance between chains to the variance within a
chain, so the closer the statistic is to one, the stronger the evidence of convergence.
#Checking convergence visually.
plot(samples_naive)

1000 1500 2000 2500 3000

2.
42

5
2.

45
0

Iterations

Trace of beta0

2.43 2.44 2.45 2.46

0
40

80

Density of beta0

N = 2000 Bandwidth = 0.0008751

1000 1500 2000 2500 3000

0.
09

0.
13

Iterations

Trace of beta1

0.08 0.09 0.10 0.11 0.12 0.13 0.14

0
20

50
Density of beta1

N = 2000 Bandwidth = 0.001378

1000 1500 2000 2500 3000

−
0.

06
5

−
0.

04
5

Iterations

Trace of beta2

−0.065 −0.060 −0.055 −0.050 −0.045

0
60

Density of beta2

N = 2000 Bandwidth = 0.0006191

1000 1500 2000 2500 3000

0.
88

0.
94

Iterations

Trace of beta3

0.86 0.88 0.90 0.92 0.94 0.96

0
15

30

Density of beta3

N = 2000 Bandwidth = 0.002389

7

#Testing convergence formally.
gelman.diag(samples_naive)

Potential scale reduction factors:
##
Point est. Upper C.I.
beta0 1 1.00
beta1 1 1.00
beta2 1 1.00
beta3 1 1.01
##
Multivariate psrf
##
1

The above plots and tests show that convergence was achieved. Expanding the number of iterations to be
saved would help the precision with which we estimate our parameters, but what we have is good enough.

We can now move on to analyse our results more concretely, for which we can request a summary of the
posterior distributions of the parameters that we are estimating. The two key statistics to focus on here are
the mean and standard deviation of the posterior distribution of each of our four estimates. These can be
considered as roughly equivalent to the point estimates of the regression coefficients and their standard errors
reported in frequentist models.
#Results from the naive frequentist model.
summary(naive_poisson_freq)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.441 0.0043 562 0.0e+00
noqual 0.110 0.0069 16 4.3e-58
price -0.055 0.0031 -18 9.5e-70
residents 0.913 0.0119 77 0.0e+00
#Results from the naive Bayesian model.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 2.441 0.0044 6.9e-05 9.7e-05
beta1 0.110 0.0068 1.1e-04 1.9e-04
beta2 -0.055 0.0031 4.9e-05 8.8e-05
beta3 0.913 0.0118 1.9e-04 2.7e-04

As we can see the results from this Bayesian model are practically identical (up to the third decimal) to our
previous model, which we estimated using frequentist statistics.

Adjusting for measurement error

Now that we have our outcome model estimated using Bayesian statistics, we can proceed to consider
different types of measurement error adjustments. We will undertake adjustments accounting for the types of
measurement error mechanisms expected to affect police recorded crime rates. As described in Pina-Sánchez
et al. (2022), such measurement error is likely to be: multiplicative (i.e. proportional to the true extent of
crime), systematic (as often crimes go under-reported), random (as a result of inconsistencies in recording
within and between police forces), and differential (recording rates are associated with other variables included
in the model).

Let’s start by considering the impact of random multiplicative error in our outcome variable. To
do so we are going to introduce a measurement error model in the code as follows: violence[i] ~
dnorm(true_violence[i]*1, tau_U). We will also define a value and a transformation: sigma_U <- 1

8

and tau_U <- (1 / sigma_U)ˆ2. Lastly, we will change the outcome model so we substitute the variable
affected by measurement error for the unobserved true variable: true_violence[i] ~ dpois(lambda[i]).
All of this is to indicate that we anticipate the presence of measurement error in the outcome variable taking
the following form: Y ∗ ∼ N(Y · 1, 1), where Y ∗ is the count of violent crimes recorded by the police, and Y
is the true but unobserved count of violent crimes.

We take the measurement error process to be non-systematic since we indicate that the mean of recorded
crimes is equal to the true crime. However, we now account for a degree of random errors in the recording of
violence by indicating that the observed violence is the result of the true value of violence plus some normally
distributed errors with a standard deviation equal to 1. This value represents an educated guess, whereby we
take into account a moderate level of random errors.

Specifically, the value chosen here indicates an expectation that crime recording inconsistencies can be
represented as a normal distribution, which for the 95% of areas where crime recording is more consistent,
represents a range of no more than -2 to 2 additional crimes per area. This seems to us a wide enough interval
considering that the mean violent count in our sample is 12.

Lastly, the tau_U <- (1 / sigma_U)ˆ2 transformation is included because JAGS define dispersion in statis-
tical distributions using precision (the inverse of the variance), but we find more intuitive to use the standard
deviation instead.
#Poisson model accounting for random errors.
model_string = "
model {

Likelihood function
Measurement error model (random)

for (i in 1:4803) {
violence[i] ~ dnorm(true_violence[i]*1, tau_U)
}

Outcome model (Poisson)
for (i in 1:4803) {

true_violence[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0 + beta1*noqual[i] + beta2*price[i] + beta3*residents[i]

}
Priors

beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
tau_U <- (1 / sigma_U)ˆ2
sigma_U <- 1
}
"
inits = list(beta0=1, beta1=0.1, beta2=-0.1, beta3=0.1)
model = jags.model(textConnection(model_string), data=data, inits=inits, n.chains=2)
samples_random = coda.samples(model, variable.names = c("beta0", "beta1",

"beta2", "beta3"), n.iter=2000, n.burnin=500, n.chains=2)
gelman.diag(samples_random)

#Comparing results from the naive model and the model adjusting for random errors.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 2.441 0.0044 6.9e-05 9.7e-05
beta1 0.110 0.0068 1.1e-04 1.9e-04
beta2 -0.055 0.0031 4.9e-05 8.8e-05
beta3 0.913 0.0118 1.9e-04 2.7e-04

9

summary(samples_random)$statistics

Mean SD Naive SE Time-series SE
beta0 2.458 0.0045 7.0e-05 0.00011
beta1 0.101 0.0074 1.2e-04 0.00022
beta2 -0.054 0.0034 5.4e-05 0.00011
beta3 0.895 0.0122 1.9e-04 0.00028

As expected, after accounting for a degree of noise in our outcome variable, the standard deviations of the
posterior distributions of the model’s estimates are now larger, except for beta1. We can also see that the
means of the posterior distributions are very similar. The intercept is slightly larger, while the slopes are
somehow smaller. Still, the direction and overall interpretation of the regression coefficients does not change.
In particular, considering our focal variable, the conditional association between education and crime remains
positive and strong. In sum, it seems that some inconsistencies in the recording of crime should not be
expected to have a large biasing effect in our estimate of the potential effect of education on crime.

Once we got to this point, it is quite easy to expand our measurement error model by including a systematic
error component. Let’s assume that we expect that only 50% of cases of violence are reported and successfully
recorded by the police. All we have to do is modify the mean of the measurement error model as follows:
violence[i] ~ dnorm(true_violence[i]*0.5, tau_U).

Try to do this yourself, following the steps we took (define the model, connect it, provide inital values, check
convergence, etc.) and assess the impact that such type of measurement error would have by comparing the
results from your adjustment against the naive model, as we just did for the case of an adjustment based on
random errors.

################# REMOVE THIS FROM THE HANDOUT #################
#Poisson model accounting for random and systematic errors.
model_string = "
model {

Likelihood function
Measurement error model (random and systematic negative)

for (i in 1:4803) {
violence[i] ~ dnorm(true_violence[i]*0.5, tau_U)

}
Outcome model (Poisson)

for (i in 1:4803) {
true_violence[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0 + beta1*noqual[i] + beta2*price[i] + beta3*residents[i]

}
Priors

beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
tau_U <- (1 / sigma_U)ˆ2
sigma_U <- 1
}
"
inits = list(beta0=1, beta1=0.1, beta2=-0.1, beta3=0.1)
model = jags.model(textConnection(model_string), data=data, inits=inits, n.chains=2)
samples_systematic = coda.samples(model, variable.names = c("beta0", "beta1",

"beta2", "beta3"), n.iter=2000, n.burnin=500, n.chains=2)
gelman.diag(samples_systematic)

10

#Comparing results from the naive model and the model adjusting for random and
#systematic errors.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 2.441 0.0044 6.9e-05 9.7e-05
beta1 0.110 0.0068 1.1e-04 1.9e-04
beta2 -0.055 0.0031 4.9e-05 8.8e-05
beta3 0.913 0.0118 1.9e-04 2.7e-04
summary(samples_systematic)$statistics

Mean SD Naive SE Time-series SE
beta0 3.167 0.0033 5.3e-05 8.4e-05
beta1 0.094 0.0052 8.1e-05 1.6e-04
beta2 -0.054 0.0025 3.9e-05 7.9e-05
beta3 0.880 0.0087 1.4e-04 1.9e-04

As anticipated in Pina-Sánchez et al. (2022), the systematic error introduced in the outcome variable does not
seem to bias our estimates, besides the expected increase of the intercept. This is because the multiplicative
relationship between the error and the true extent of crime turns into an additive relationship when the
outcome variable is specified under a generalised linear model that involves a log-link function, like the Poisson
model; log(Y ∗) = log(Y · U) = log(Y) + log(U). We do see, however, much smaller standard deviations for
the posterior distributions; which could result in type-II errors (failing to detect a significant effect) in naive
models that do not account for crime underrecording.

####################### UP TO HERE #######################

We can now explore differential errors, which take place when the measurement error is associated with the
predictors or outcome of interest. In the following example we maintain the same assumptions regarding
the presence of inconsistencies and average underrecording, but will also assume that the probability of
reporting/recording crime is 10% lower in areas where the number of residents with no qualification is ten
percentage points above the mean. This is equivalent to assuming a 50% recording rate of violent crimes in
LOAS with average proportion of residents with no qualifications (17.8%), and a recording rate of 45% in
LSOAs where the proportion of residents with no qualifications is 27.8%.

To reflect these systematic errors we use: violence[i] ~ dnorm(true_violence[i]*diff.P[i], tau_U),
where diff.P[i] is the individual probability of recording attributed to each LSOA according to their
proportion of residents with no qualifications. These probabilities are derived after defining the asso-
ciation between the error term and the percentage of residents with no qualification using a risk ratio
of 0.9, represented in the code as diff.RR <- 0.9, which we transform into odds ratios, diff.OR <-
(diff.RR*(1 - recording)) / (1 - (diff.RR*recording)), so we are ultimately able to derive the
differential probabilities of recording as follows: diff.P[i] <- exp(log(recording/(1-recording)) +
log(diff.OR)*noqual[1]) / (1+exp(log(recording/(1-recording)) + log(diff.OR)*noqual[i])).

This last expression reflects the estimation of probabilities based on a simple logistic model with its intercept
taken to be the baseline recording rate, and its slope being the differential error expressed as log-odds. If you
want to consider different levels of baseline recording rates and their association with the focal variable, all
you need to do is modify the values assigned to recording and diff.RR in the model syntax.

Lastly, since we are increasing the complexity of the estimation process by including a new measurement
model, we proceed to double the number of iterations to be saved, from 2,000 to 4,000.
#Poisson model accounting for random, systematic errors and differential errors.
model_string = "
model {

Likelihood function
Measurement error model (random, systematic negative and differential)

11

for (i in 1:4803) {
violence[i] ~ dnorm(true_violence[i]*diff.P[i], tau_U)

#Calculating the differential recording rates for each area
diff.P[i] <- exp(log(recording/(1-recording)) + log(diff.OR)*noqual[1]) /

(1+exp(log(recording/(1-recording)) + log(diff.OR)*noqual[i]))
}

Outcome model (Poisson)
for (i in 1:4803) {

true_violence[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta0 + beta1*noqual[i] + beta2*price[i] + beta3*residents[i]

}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
tau_U <- (1 / sigma_U)ˆ2
sigma_U <- 1
recording <- 0.5
#Differential error as a risk ratio
diff.RR <- 0.9
#Differential error as an odds ratio: OR = (RR * (1 - p)) / (1 - (RR * p))
diff.OR <- (diff.RR*(1 - recording)) / (1 - (diff.RR*recording))

}
"
inits = list(beta0=1, beta1=0.1, beta2=-0.1, beta3=0.1)
model = jags.model(textConnection(model_string), data=data, inits=inits, n.chains=2)
samples_differential = coda.samples(model, variable.names = c("beta0", "beta1",

"beta2", "beta3"), n.iter=4000, n.burnin=500, n.chains=2)
gelman.diag(samples_differential)

#Comparing results from the naive model and the model adjusting for random,
#systematic and differential errors.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 2.441 0.0044 6.9e-05 9.7e-05
beta1 0.110 0.0068 1.1e-04 1.9e-04
beta2 -0.055 0.0031 4.9e-05 8.8e-05
beta3 0.913 0.0118 1.9e-04 2.7e-04
summary(samples_differential)$statistics

Mean SD Naive SE Time-series SE
beta0 3.1789 0.0032 3.6e-05 5.6e-05
beta1 -0.0021 0.0052 5.8e-05 1.1e-04
beta2 -0.0503 0.0023 2.6e-05 5.3e-05
beta3 0.8777 0.0085 9.5e-05 1.4e-04

As for the previous model considering systematic underrecording, the standard deviations are much smaller
than in the naive model. The means of the posterior distributions for median house price and number
of residents remain relatively similar too. However, the estimate for the percentage of residents without
qualifications has changed drastically. We can see how its effect size has become practically zero. Such change
in our main estimate of interest, and therefore in our interpretation of the association between education and
crime, is quite remarkable, especially if we consider the relatively modest differential errors introduced in our

12

measurement model.

In sum, for the specific scenarios that we have considered here, with police recorded violent crime counts
used as the outcome model of a Poisson model, we can conclude that many of the error mechanisms seen in
police data had a relatively negligible impact. The only exception is when the focal variable affects crime
recording. In that case, even relatively modest forms of differential errors can lead us to categorically wrong
conclusions, as we have seen here for the case of the relationship between education and violent crime.

Unfortunately - as far as we are aware - these types of differential errors have not been considered in the
literature. To make it worse, this is not just a problem affecting the literature exploring the relationship
between education and crime. There is evidence of a wide range of other area characteristics commonly taken
as causes of crime (e.g. income, ethnic composition, economic activity, etc.) that are likely associated with
the probability of crime being reported to the police (Brunton-Smith et al., 2022; Buil-Gil et al., 2021), which
underscores the need to undertake sensitivity analyses in every study relying on police data.

Exercise 2. Adjusting for missing data and recall errors in the Cyber Security
Breaches Survey
We start this exercise importing the simplified version of the 2023 Cyber Security Breaches Survey that we
used in the SIMEX workshop.
#Importing the data.
cyber = read.csv('cyber.csv')
#Remember to use the address of the folder where you saved the dataset.

You might remember that in this simplified version of the Cyber Security Survey we have just five variables
describing 1315 firms that were subject to phishing attacks. These five variables represent: i) a broad
definition of the company’s sector (private sector, charity, or education); ii) the size of the firm in terms of
number of employees; iii) whether they have a policy in place to protect against cyber crime; iv) whether the
participant considers that new measures are needed to prevent future breaches/attacks (response); and v) the
number of phishing attacks experienced over the last twelve months (phishcount).
head(cyber)

sector size policy response phishcount
1 private sector 3 1 0 1
2 private sector 2 0 0 5
3 private sector 4 0 0 1
4 private sector 2 0 0 2
5 private sector 8 0 0 2
6 private sector 3 0 0 20
table(cyber$sector, useNA="ifany")

##
charity education private sector
353 271 691
summary(cyber)[,2:5]

size policy response phishcount
Min. : -97 Min. :0.00 Min. :0.00 Min. : -99
1st Qu.: 5 1st Qu.:0.00 1st Qu.:0.00 1st Qu.: 2
Median : 40 Median :1.00 Median :0.00 Median : 6
Mean : 490 Mean :0.62 Mean :0.26 Mean : 603
3rd Qu.: 200 3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.: 35
Max. :90000 Max. :1.00 Max. :1.00 Max. :100000

13

We noticed negative cases in both size and phishcount, reflecting instances where participants declined to
respond or indicated that they did not know the answer. In our previous workshop we ignored these missing
cases using listwise deletion. Here we will see how we can impute them instead using Bayesian statistics.
Furthermore, we will see how we can undertake such missing data imputation while simultaneously adjusting
for recall errors in reports of phishing attacks experienced in the last twelve months. We will undertake these
two adjustments sequentially, but before we do so we need to undertake a few more data cleaning procedures.
#Setting non-responses as missing data.
cyber$size = ifelse(cyber$size<0, NA, cyber$size)
cyber$phishcount = ifelse(cyber$phishcount<0, NA, cyber$phishcount)

After setting missing cases in size and phishcount as NA, we log-transform these two variables so they are not
so heavily right-skewed.
#Log-transforming two heavily right-skewed variables.
cyber$logsize = log(cyber$size)
cyber$logphish = log(cyber$phishcount)

Lastly, we manually create dummy variables out of the categorical variable sector, as this is the format
required in rjgas.
#Turning sector into dummy variables.
cyber$sector_edu = ifelse(cyber$sector=="education", 1, 0)
cyber$sector_pri = ifelse(cyber$sector=="private sector", 1, 0)
#Dropping redundant variables.
cyber$sector = cyber$size = cyber$phishcount = NULL

To frame our adjustments we will explore again our first research question from the SIMEX workshop: Which
types of firms tend to experience more phishing attacks? To do so we will start with a naive model where we
assume perfectly measured variables and missing data completely at random.
naive_freq = lm(logphish ~ logsize + sector_edu + sector_pri + policy, data=cyber)
summary(naive_freq)

##
Call:
lm(formula = logphish ~ logsize + sector_edu + sector_pri + policy,
data = cyber)
##
Residuals:
Min 1Q Median 3Q Max
-3.450 -1.478 -0.237 1.155 9.105
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2628 0.1732 7.29 5.9e-13 ***
logsize 0.1900 0.0318 5.98 3.0e-09 ***
sector_edu 0.0508 0.1738 0.29 0.77005
sector_pri 0.4942 0.1420 3.48 0.00052 ***
policy 0.3455 0.1277 2.71 0.00693 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.9 on 1116 degrees of freedom
(194 observations deleted due to missingness)
Multiple R-squared: 0.0543, Adjusted R-squared: 0.0509
F-statistic: 16 on 4 and 1116 DF, p-value: 9.49e-13

14

Notice how the above model discarded 194 observations due to missingness. This should not have a huge
impact since it is only 15% of the sample, however, we will see how if we estimate the above model using
Bayesian statistics we can easily impute these missing cases and in so doing improve the robustness of our
analysis. Let’s start by replicating the frequentist linear model we just run using Bayesian statistics. To do
so, we will create a new dataset where we delete all missing cases, as the lm command did automatically.
#Listwise deletion.
cyber_lwd = na.omit(cyber)

The code that we will use to specify this naive linear model is very similar to that for the naive Poisson
model that we estimated in the previous exercise. There are only three differences: i) we use dnorm instead of
dpois to specify that the outcome variable follows a normal distribution, instead of a Poisson distribution; ii)
tau_e ~ dunif(0,100), we include a precision term to capture the dispersion of that normal distribution;
we use a diffuse prior to indicate that we do not know anything about that parameter; we did not have to do
this before because the variance of a Poisson distribution is defined by its mean; iii) and we remove any link
functions on mu[i] since this is a linear model.
#Naive model - assuming missing completely at random and perfect measurements.
model_string = "
model {

Likelihood
Outcome model (Linear)

for (i in 1:1121) {
logphish[i] ~ dnorm(mu[i], tau_e)
mu[i] <- beta0 + beta1*logsize[i] + beta2*sector_edu[i] + beta3*sector_pri[i] +

beta4*policy[i]
}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
beta4 ~ dnorm(0, 0.00001)
tau_e ~ dunif(0,100)

}
"
inits = list(beta0=1, beta1=0.2, beta2=0.1, beta3=0.5, beta4=0.3)
model = jags.model(textConnection(model_string), data=cyber_lwd, inits=inits, n.chains=2)
samples_naive = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3", "beta4"),
n.iter=2000, n.burnin=500, n.chains=2)

#Checking convergence.
gelman.diag(samples_naive)

Potential scale reduction factors:
##
Point est. Upper C.I.
beta0 1.01 1.04
beta1 1.01 1.04
beta2 1.00 1.00
beta3 1.00 1.01
beta4 1.00 1.00
##
Multivariate psrf
##

15

1.01

We can see how 2000 iterations is enough to achieve convergence and estimate the posterior distributions
precisely.
#Comparing results from the frequentist and Bayesian naive models.
summary(naive_freq)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.263 0.173 7.29 5.9e-13
logsize 0.190 0.032 5.98 3.0e-09
sector_edu 0.051 0.174 0.29 7.7e-01
sector_pri 0.494 0.142 3.48 5.2e-04
policy 0.346 0.128 2.71 6.9e-03
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 1.270 0.171 0.0027 0.0099
beta1 0.190 0.032 0.0005 0.0015
beta2 0.039 0.175 0.0028 0.0053
beta3 0.486 0.141 0.0022 0.0063
beta4 0.342 0.129 0.0020 0.0043

We can also demonstrate that results from our two naive models, using frequentist and Bayesian statistics, are
practically identical. At this point, once we have specified the outcome model that we seek to explore using
Bayesian statistics, we can expand it so it does not rely on the naive assumptions we have considered. We
start by considering imputations for logsize and logphish. To do so we return to the complete dataset, cyber.

Adjusting for missing data

We will follow two imputation procedures. For the outcome variable logphish we will impute its missing
values simply according to the variables included in the outcome model. That is, we will assume missing
at random after conditioning on logsize, sector and policy. For the explanatory variable logsize we will
specify its own imputation model. We will impute its missing values using a linear model logsize[i]
~ dnorm(mu1[i], tau_e2), and three auxiliary variables mu1[i] <- theta0 + theta1*sector_edu[i] +
theta2*sector_pri[i] + theta3*policy[i].
#Model assuming missing at random and perfect measurements.
model_string = "
model {

Likelihood
Imputation model

for (i in 1:1315) {
logsize[i] ~ dnorm(mu1[i], tau_e1)
mu1[i] <- theta0 + theta1*sector_edu[i] + theta2*sector_pri[i] + theta3*policy[i]

}
Outcome model (Linear)

for (i in 1:1315) {
logphish[i] ~ dnorm(mu2[i], tau_e2)
mu2[i] <- beta0 + beta1*logsize[i] + beta2*sector_edu[i] + beta3*sector_pri[i] +

beta4*policy[i]
}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)

16

beta3 ~ dnorm(0, 0.00001)
beta4 ~ dnorm(0, 0.00001)
theta0 ~ dnorm(0, 0.00001)
theta1 ~ dnorm(0, 0.00001)
theta2 ~ dnorm(0, 0.00001)
theta3 ~ dnorm(0, 0.00001)
tau_e1 ~ dunif(0,100)
tau_e2 ~ dunif(0,100)

}
"
inits = list(beta0=1, beta1=0.2, beta2=0.1, beta3=0.5, beta4=0.3,

theta0=-1, theta1=1, theta2=-1, theta3=1)
model = jags.model(textConnection(model_string), data=cyber, inits=inits, n.chains=2)
samples_imp = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3", "beta4", "theta0", "theta1", "theta2", "theta3"),
n.iter=2000, n.burnin=500, n.chains=2)

gelman.diag(samples_imp)

#Comparing results between the naive model and the model assuming MAR.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 1.270 0.171 0.0027 0.0099
beta1 0.190 0.032 0.0005 0.0015
beta2 0.039 0.175 0.0028 0.0053
beta3 0.486 0.141 0.0022 0.0063
beta4 0.342 0.129 0.0020 0.0043
summary(samples_imp)$statistics

Mean SD Naive SE Time-series SE
beta0 1.273 0.162 0.00256 0.0083
beta1 0.186 0.031 0.00048 0.0017
beta2 0.085 0.165 0.00261 0.0049
beta3 0.487 0.133 0.00210 0.0058
beta4 0.356 0.125 0.00198 0.0044
theta0 3.261 0.125 0.00198 0.0062
theta1 0.947 0.154 0.00243 0.0050
theta2 -0.916 0.123 0.00195 0.0049
theta3 1.428 0.113 0.00178 0.0040

We can see that the imputation process made little difference in the estimates of our outcome model, suggesting
that in this case listwise deletion and the assumption of missing completely at random are both valid. This is
not to say that the imputation process was entirely useless. All the regression coefficients in the imputation
model for logsize (theta0 to theta4) were significant. This means that the information available in our
auxiliary data helped us predict the missing cases of logsize, and in so doing increase the precision of our
model.

Under a Bayesian approach, we are taking these imputed missing cases as additional model parameters to be
estimated, each one with their own posterior distribution, reflecting the precision of our predictions, and
transposing the uncertainty associated with this imputation process into the outcome model, without having
to undertake multiple imputations. To see this we can obtain a new sample of 2000 iterations but this time
requesting to save a few of the values of logphish and logsize. Specifically, we will save cases 12 to 14 from
logphish and 8 to 10 from logsize. This is so you can appreciate a range of missing and observed cases, but we
could potentially save them all, which could be useful to further evaluate the effectiveness of the imputation
process.

17

#Saving the MCMC chains for a few cases of logphish and logsize.
samples_imp = coda.samples(model, variable.names = c("logphish[12:14]",

"logsize[8:10]"), n.iter=2000, n.burnin=500, n.chains=2)
summary(samples_imp)$statistics

Mean SD Naive SE Time-series SE
logphish[12] 0.0 0.0 0.000 0.000
logphish[13] 2.4 1.9 0.030 0.030
logphish[14] 2.1 1.9 0.031 0.030
logsize[8] 1.8 0.0 0.000 0.000
logsize[9] 2.2 1.8 0.029 0.029
logsize[10] 1.4 0.0 0.000 0.000
plot(samples_imp)

3000 3500 4000 4500 5000

−
1.

0

Iterations

Trace of logphish[12] Density of logphish[12]

0
3

−0.4 −0.2 0.0 0.2 0.4

3000 3500 4000 4500 5000

−
4

6

Iterations

Trace of logphish[13]

−5 0 5 10

0.
00

Density of logphish[13]

N = 2000 Bandwidth = 0.387

3000 3500 4000 4500 5000

−
4

6

Iterations

Trace of logphish[14]

−5 0 5 10

0.
00

Density of logphish[14]

N = 2000 Bandwidth = 0.3918

18

3000 3500 4000 4500 5000

1.
2

Iterations

Trace of logsize[8] Density of logsize[8]

0.
0

2.
0

0.5 1.0 1.5 2.0 2.5

3000 3500 4000 4500 5000

−
4

6

Iterations

Trace of logsize[9]

−5 0 5 10

0.
00

Density of logsize[9]

N = 2000 Bandwidth = 0.367

3000 3500 4000 4500 5000

0.
8

Iterations

Trace of logsize[10] Density of logsize[10]

0
3

0.8 1.0 1.2 1.4 1.6

Notice how logphish and logsize values that were observed in the dataset are taken as given, whereas missing
values are estimated. The uncertainty associated to these predictions can be derived from the variability in
their posterior distribution.

We could take these imputation models forward and possibly improve their precision further by including
additional auxiliary data predictive of the missing values. We left two variables out of the imputation model
for logsize. These are: logphish and response. The former could not be used in the imputation model for
logsize as that would lead to a problem of circularity (logsize is already used to predict logphish in the outcome
model). However, we could expand the imputation model including response as an additional auxiliary
variable. See if you can do so by expanding our last imputation model, and check whether the inclusion of
response improves predictions of missing cases of logsize.

################# REMOVE THIS FROM THE HANDOUT #################
#Model assuming missing at random including 'response'.
model_string = "
model {

Likelihood
Imputation model

for (i in 1:1315) {
logsize[i] ~ dnorm(mu1[i], tau_e1)
mu1[i] <- theta0 + theta1*sector_edu[i] + theta2*sector_pri[i] + theta3*policy[i] +

theta4*response[i]
}

Outcome model (Linear)
for (i in 1:1315) {

logphish[i] ~ dnorm(mu2[i], tau_e2)
mu2[i] <- beta0 + beta1*logsize[i] + beta2*sector_edu[i] + beta3*sector_pri[i] +

19

beta4*policy[i]
}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
beta4 ~ dnorm(0, 0.00001)
theta0 ~ dnorm(0, 0.00001)
theta1 ~ dnorm(0, 0.00001)
theta2 ~ dnorm(0, 0.00001)
theta3 ~ dnorm(0, 0.00001)
theta4 ~ dnorm(0, 0.00001)
tau_e1 ~ dunif(0,100)
tau_e2 ~ dunif(0,100)

}
"
inits = list(beta0=1, beta1=0.2, beta2=0.1, beta3=0.5, beta4=0.3,

theta0=-1, theta1=1, theta2=-1, theta3=1, theta4=-1)
model = jags.model(textConnection(model_string), data=cyber, inits=inits, n.chains=2)
samples_imp2 = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3", "beta4", "theta0", "theta1", "theta2", "theta3", "theta4"),
n.iter=2000, n.burnin=500, n.chains=2)

gelman.diag(samples_imp2)

summary(samples_imp2)$statistics

Mean SD Naive SE Time-series SE
beta0 1.247 0.161 0.00254 0.0096
beta1 0.192 0.031 0.00049 0.0016
beta2 0.092 0.167 0.00264 0.0047
beta3 0.505 0.133 0.00210 0.0060
beta4 0.344 0.125 0.00198 0.0043
theta0 3.142 0.125 0.00198 0.0061
theta1 0.918 0.156 0.00247 0.0047
theta2 -0.907 0.125 0.00197 0.0052
theta3 1.355 0.110 0.00173 0.0035
theta4 0.627 0.119 0.00189 0.0026

It seems that including response improves the imputation model. Specifically, we can see how conditioning on
all other auxiliary variables used, firms which are considering responding to future phishing attacks are more
likely to be larger in size.

####################### UP TO HERE #######################

Adjusting for missing data and measurement error

At this point we can expand our latest model so it can account for measurement error as well as missing data.

In the SIMEX workshop we discussed how we expect the variable logphish to be heavily affected by recall
errors, since most managers won’t be able to remember the exact number of phishing attacks their firms
experienced. We theorised that these errors might take the form of multiplicative random errors, which would
be transformed into classical errors if the variable capturing the number of phishing attacks is log-transformed.
We also considered that as a result of these recall errors the reliability of logphish might be closer to 80%
than to 100%, which would be equivalent to the error term having a standard deviation equal to 0.9.

20

We can use all that information to estimate a measurement model as we simultaneously estimate the
imputation and outcome models that we had before.
model_string = "
model {

Likelihood
Measurement error model

for (i in 1:1315) {
logphish[i] ~ dnorm(true_logphish[i], tau_U)

}
Imputation model

for (i in 1:1315) {
logsize[i] ~ dnorm(mu1[i], tau_e1)
mu1[i] <- theta0 + theta1*sector_edu[i] + theta2*sector_pri[i] + theta3*policy[i]

}
Outcome model (Linear)

for (i in 1:1315) {
true_logphish[i] ~ dnorm(mu2[i], tau_e2)
mu2[i] <- beta0 + beta1*logsize[i] + beta2*sector_edu[i] + beta3*sector_pri[i] +
beta4*policy[i]

}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
beta4 ~ dnorm(0, 0.00001)
theta0 ~ dnorm(0, 0.00001)
theta1 ~ dnorm(0, 0.00001)
theta2 ~ dnorm(0, 0.00001)
theta3 ~ dnorm(0, 0.00001)
tau_U <- (1 / sigma_U)ˆ2
sigma_U <- 0.9
tau_e1 ~ dunif(0,100)
tau_e2 ~ dunif(0,100)

}
"
inits = list(beta0=1, beta1=0.2, beta2=0.1, beta3=0.5, beta4=0.3)
model = jags.model(textConnection(model_string), data=cyber, inits=inits, n.chains=2)
samples_random = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3", "beta4"),
n.iter=2000, n.burnin=500, n.chains=2)

gelman.diag(samples_random)

#Comparing results between the naive model and the model accounting for both
#missing data and measurement error.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 1.270 0.171 0.0027 0.0099
beta1 0.190 0.032 0.0005 0.0015
beta2 0.039 0.175 0.0028 0.0053
beta3 0.486 0.141 0.0022 0.0063
beta4 0.342 0.129 0.0020 0.0043

21

summary(samples_random)$statistics

Mean SD Naive SE Time-series SE
beta0 1.252 0.170 0.0027 0.0110
beta1 0.192 0.032 0.0005 0.0018
beta2 0.074 0.166 0.0026 0.0057
beta3 0.496 0.135 0.0021 0.0068
beta4 0.345 0.126 0.0020 0.0053

We do not see substantial differences after accounting for measurement error in logphsish. This is to be
expected since the errors are random additive (classical), affecting the outcome variable, and its reliability is
considerably high.

We could continue expanding the robustness of our model further by considering adjustments of additional
variables prone to measurement error. In the SIMEX workshops we also considered that logsize is affected
by similar recall errors. We argued that the variable could be approximately measured with 90% reliability,
which would mean a standard deviation of the measurement error term equal to 0.7. With that information,
would you be able to expand our previous model including an additional measurement model for logsize? Do
you appreciate any noticeable impact?

################# REMOVE THIS FROM THE HANDOUT #################
model_string = "
model {

Likelihood
Measurement error model

for (i in 1:1315) {
logphish[i] ~ dnorm(true_logphish[i], tau_U1)

}
for (i in 1:1315) {

logsize[i] ~ dnorm(true_logsize[i], tau_U2)
}

Imputation model
for (i in 1:1315) {

true_logsize[i] ~ dnorm(mu1[i], tau_e1)
mu1[i] <- theta0 + theta1*sector_edu[i] + theta2*sector_pri[i] + theta3*policy[i]

}
Outcome model (Linear)

for (i in 1:1315) {
true_logphish[i] ~ dnorm(mu2[i], tau_e2)
mu2[i] <- beta0 + beta1*true_logsize[i] + beta2*sector_edu[i] + beta3*sector_pri[i] +
beta4*policy[i]

}
Priors
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
beta3 ~ dnorm(0, 0.00001)
beta4 ~ dnorm(0, 0.00001)
theta0 ~ dnorm(0, 0.00001)
theta1 ~ dnorm(0, 0.00001)
theta2 ~ dnorm(0, 0.00001)
theta3 ~ dnorm(0, 0.00001)
tau_U1 <- (1 / sigma_U1)ˆ2
sigma_U1 <- 0.9
tau_U2 <- (1 / sigma_U2)ˆ2

22

sigma_U2 <- 0.7
tau_e1 ~ dunif(0,100)
tau_e2 ~ dunif(0,100)

}
"
inits = list(beta0=1, beta1=0.2, beta2=0.1, beta3=0.5, beta4=0.3)
model = jags.model(textConnection(model_string), data=cyber, inits=inits, n.chains=2)
samples_random = coda.samples(model, variable.names = c("beta0", "beta1", "beta2",

"beta3", "beta4"),
n.iter=2000, n.burnin=500, n.chains=2)

gelman.diag(samples_random)

#Comparing results between the naive model and the model accounting for both
#missing data and measurement error in logsize and logphish.
summary(samples_naive)$statistics

Mean SD Naive SE Time-series SE
beta0 1.270 0.171 0.0027 0.0099
beta1 0.190 0.032 0.0005 0.0015
beta2 0.039 0.175 0.0028 0.0053
beta3 0.486 0.141 0.0022 0.0063
beta4 0.342 0.129 0.0020 0.0043
summary(samples_random)$statistics

Mean SD Naive SE Time-series SE
beta0 1.113 0.178 0.00282 0.0135
beta1 0.228 0.036 0.00056 0.0024
beta2 0.055 0.167 0.00264 0.0060
beta3 0.545 0.132 0.00208 0.0067
beta4 0.308 0.126 0.00200 0.0054

We can now see how the regression coefficient for logsize has been attenuated in the naive model as a result
of the random errors affecting that variable.

####################### UP TO HERE #######################

Discussion
We conclude this tutorial by underscoring once again the high flexibility afforded by Bayesian statistics.
Beyond their identifiability, there are no limits to the type of outcome and measurement error models that
can be estimated. Furthermore, we have also seen how we can expand these models to account for missing
data, but also account for virtually any other questionable assumption that we suspect might be biasing our
estimates. Here we have only scratched the surface.

It is also worth considering how in the above exercises we have provided specific values for the systematic,
random or differential part of the error, but a more realistic approach would be to use ranges of values, or
even better probability distributions, to reflect the uncertainty surrounding those values. This could be done
by using prior distributions for the recording rate, or the standard deviation of the measurement error. To
learn more about measurement error and misclassification adjustments using Bayesian statistics we highly
recommend a classic textbook on the subject, Gustafson (2003).

23

References
Buil-Gil, D., Medina, J., and Schlomo, N. (2020). ‘Measuring the dark figure of crime in geographic areas:
Small area estimation from the Crime Survey for England and Wales’. The British Journal of Criminology,
61(2), 364–388.

Buonanno, P., and Montolio, D. (2008). Identifying the socio-economic and demographic determinants of
crime across Spanish provinces. International Review of Law and Economics, 28(2), 89-97.

Fajnzylber, P., Lederman, D., and Loayza, N. (2002). What causes violent crime?. European economic review,
46(7), 1323-1357.

Gallop, M., and Weschle, S. (2019). ‘Assessing the impact of non-random measurement error on inference: a
sensitivity analysis approach’. Political Science Research and Methods, 7(2), 367-384.

Groot, W., and van den Brink, H. M. (2010). ‘The effects of education on crime’. Applied Economics, 42(3),
279-289.

Gustafson, P. (2003). Measurement error and misclassification in statistics and epidemiology: Impacts and
Bayesian adjustments. CRC Press.

Lochner, L. (2020). Education and crime. In The Economics of Education (pp. 109-117). Academic Press.

Pina-Sánchez, J., Buil-Gil, D., Brunton-Smith, I., and Cernat, A. (2022). ‘The impact of measurement error
in models using police recorded crime rates’. Journal of Quantitative Criminology, 39, 975–1002

Pina-Sánchez, J., Brunton-Smith, I., Buil-Gil, D., and Cernat, A. (2023). ‘Exploring the impact of measure-
ment error in police recorded crime rates through sensitivity analysis’. Crime Science

Pina-Sánchez, J., Koskinen, J., and Plewis, I. (2019). ‘Adjusting for measurement error in retrospectively
reported work histories: An analysis using Swedish register data’. Journal of Official Statistics, 35(1), 203-229.

24

	Introduction
	Downloading and installing JAGS and rjags

	Exercise 1. Accounting for multiple forms of measurement error
	Importing, cleaning and exploring the data
	Bayesian modelling in rjags
	Adjusting for measurement error

	Exercise 2. Adjusting for missing data and recall errors in the Cyber Security Breaches Survey
	Adjusting for missing data
	Adjusting for missing data and measurement error

	Discussion
	References

