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What Are Time-Series?

e Any metric that is measured over regular time intervals makes a
time series
e Share the time dimension that we will see in longitudinal data

— but the focus is on one (or a few) subjects/entities

— across a much larger timespan

— the focus tends to be on forecasting based on observed past
patterns

— the modelling strategies are very different
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— across a much larger timespan
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B Teereretiny — the focus tends to be on forecasting based on observed past
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Prediction — the modelling strategies are very different

e Predominantly employed in Economics and by business analysts
— to forecasts stock prices, changes in GDP
— to understand economic cycles, or seasonal sales of certain
products
o Although less frequent, also used in Sociology and Criminology
— estimate the deterrent effect of new (more punitive) laws

— estimate the extent to which public demonstrations are
seasonally determined
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— trend (T%): the general tendency of a time series to increase,
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decrease or stagnate over a long period of time
— seasonality (S¢): fluctuations within a regular period of time;
Recap Ciclicality (Ct) can also be included to capture wider fluctuations

— irregular component (I3): random variations, do not show a
particular pattern, unpredictable
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Introduction e A time series can be broken down into its main components
87 (STt — this helps understand, analyse, and model it

Components of a

Time Series

— and carry out forecasts
Additive vs

Multiplicative

Surclzmen, AGT e Fach data point (Y%) at time ¢ in a time series can be expressed
as the combination of
ARIMA Models

Differencing

— trend (T%): the general tendency of a time series to increase,
M decrease or stagnate over a long period of time

— seasonality (S¢): fluctuations within a regular period of time;
Recap Ciclicality (Ct) can also be included to capture wider fluctuations

— irregular component (I3): random variations, do not show a
particular pattern, unpredictable

e Combined as either a sum or a product
— additive model: Y; =T} + St + I}

assumes components are independent of each other
— multiplicative model: Y: = Tt X St X I+

assumes components can affect one another
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seasonal trend observed

randorm

Decomposition of Time-Series

New York Birth Time-Series (decomposed)
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Time

Source: Avril Coghlan
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Stationarity

e A time-series is said to be stationary if it holds the following
conditions true:

— the mean value of time-series is constant over time, i.e. the trend
component is nullified

— the variance does not increase over time

— seasonality effect is minimal

e It looks like random white noise irrespective of the observed
time interval
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Sty 467 — the mean value of time-series is constant over time, i.e. the trend
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component is nullified
ARIMA Models

Differencing

— the variance does not increase over time
AR

MA — seasonality effect is minimal

e It looks like random white noise irrespective of the observed
time interval

e In essence, stationarity means that the statistical properties of a
process generating a time series do not change over time

— to be able to model time-series we are going to seek to turn them
stationary
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I) in the calculation of its correlations

— that is why it is know as a ‘complete auto-correlation plot’



UNIVERSITY OF LEEDS
ACF and PACF

Workshop Aims e To help us decide the most appropriate model we are going to
Tt rely on two useful diagnostic functions

Key Concepts

e Auto-correlation function (ACF)

Comp
Tir s
Additive vs — gives us values of auto-correlation of any series with its lagged
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values

Stationarity, ACF

and PACE — it describes how well the present value of the series is related to
ARIMA Models its past values

Differencing

AR — it can be used to inform the number of lags to be included in the

MA model
Prediction

PO — ACF considers all the components in a time-series (7', S, C and
I) in the calculation of its correlations

— that is why it is know as a ‘complete auto-correlation plot’

e Partial auto-correlation function (PACF)

— instead of finding correlations of present values with lags, PACF
finds correlation of the residuals (remaining after removing the
effects explained by the earlier lags) with the next lag value

— ‘partial’ because we remove already found variations before
calculating the correlation

— can help us inform the model if there is any ‘hidden information’
o in the residual which can be modelled by the next lag
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ARIMA Models

e The most common approach to model time-series

e Composed of an autoregressive (AR) part
— Associated with the ACF

e And a moving average (MA) part
— associated with the PACF

e Requires the time-serie(s) to be stationary

— to do so we can use differencing, aka integration (I)
— which stands for the I in ARIMA
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Differencing

e By subtracting each data point in the series from its successor
we can often turn a non-stationary time series stationary

~ Y =Yi Y

— useful to remove trends and cycles
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Differencing

e By subtracting each data point in the series from its successor
we can often turn a non-stationary time series stationary

~ Y =Yi Y

— useful to remove trends and cycles

e Sometimes higher order differences are necessary to achieve
stationarity

— often a second order difference is enough

- Y2 =Yl-Ve, =Y —Yi—1) — (Yim1 — Yi2)
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ARIMA Models
Differencing . . .
. e Sometimes higher order differences are necessary to achieve
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P liction

— often a second order difference is enough
- Y2 =Yl-Ve, =Y —Yi—1) — (Yim1 — Yi2)

e If the time series appears to be seasonal, a better approach is to
difference with respective season’s data points

- Y;gd = ()/t - i/t—s) - (Y;f—l - Y;f—s—l)

— this can help to remove the seasonal effect

11-21
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e To decide the order of the AR the model we can use the ACF

— which plots the level of auto-correlation at each lag

— and the 95% confidence interval to determine their statistical
significance

13-21



I
UNIVERSITY OF LEEDS

Auto-Correlation Function

Workshop Aims

Introduction

Key Concepts

= |
Components of a -
Time Series
Additive vs 2
Multiplicative
Stationarity, ACH
and PACF o _|
=3
ARIMA Models
Differencing = J
L ©
AR o
=z
MA ~
o
Prediction
Recap - ] | l I | I
=1

o~
S
= ]
< T T T T T
o 5 10 15 20
Lag

Source: Avril Coghlan

14-21


https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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Moving Average Models

e MA are also linear models where the outcome variables is
regressed on its own imperfectly predicted lagged values

— Yy =00+ 01et—1 + 0202+ ...+0ge1—g +er
— if a lag up to ¢ is included in the model, the MA process is said
to be of order ¢
e To decide the order of the MA the model we can use the PACF
— which plots the level of auto-correlation at each lag

— and the 95% confidence interval to determine their statistical
significance
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and PACF
ARIMA Models — an AR model of order p

e — and a MA model of order ¢

e Once the series is turn stationary following the integration
sy process, we have an ARMA (p, ¢) model

—Yi=04+{t1Yi—1 + Yo+ ..+ dpYip}+
{01€¢—1 + O2es—2 + ... + 0gei—q} + et

— this is the model to be estimated

— which can be used use to make predictions

17-21
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— we estimate the value for the next period (Yi41) as
Vig1 =04 ¢1Ys + O1eq

and then use that value to estimate the next period (Yi42)
Viyz =6+ 61Vep1 + 016441
and so on

18-21
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e We can estimate future values of Y

AR
MA

— this is done sequentially
Predictions
T — we estimate the value for the next period (Yi41) as

Vig1 =6+ d1Ye + bres

and then use that value to estimate the next period (Yi42)
Viya =6+ ¢1Yip1 + 0r1éia

and so on

the uncertainty of our predictions will grow as we move into the
future, away from ¢

18-21



UNIVERSITY OF LEEDS

Workshop Aims

Detecting Causal Effects

Introduction

e We can also use time-series analysis to detect the causal effect of
Key Concepts discrete interventions

Components of a
l'ime Series

i.e. policies/events that take place at a specific date
Additive v.
Multiplicative

Sta

we can assess whether the time-series changes its properties after

onarity, ACE

tationar the intervention took place

ARIMA Models — ex.1l: Did the 2018 minimum wage increase in Spain had an
Differencing impact on the unemployment rate?

AR

MA — ex.2: Did the new sentencing guidelines increased sentence
Predictions severity in England and Wales?

Recap

often referred as interrupted time-series models
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— i.e. policies/events that take place at a specific date

— we can assess whether the time-series changes its properties after
the intervention took place

ARIMA Models — ex.1l: Did the 2018 minimum wage increase in Spain had an

B Teereretiny impact on the unemployment rate?
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MA — ex.2: Did the new sentencing guidelines increased sentence

severity in England and Wales?
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— often referred as interrupted time-series models

e For these types of analyses we divide the time-series in two
parts

— we model the start of the time-series up to the last time point
before the intervention took place

— based in that model, we predict values for time periods following
the intervention

— then we compare the predicted against the observed values

19-21
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— exponential-smoothing methods
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— properly modelling seasonal and cyclical effects
— and much more
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ntroduction e We have learnt about...

Key Concepts

— the main components defining time-series (7', S, C, and I)

— the key statistics and properties to be considered in modelling
. time-series (stationarity, ACF, and PACF)

— the main family of models for the analysis of time-series
ARIMA Models ([\I{IIVIf\)

Differencing

AR

Y e There is so much we have not covered though

fredenen — exponential-smoothing methods
Recap
— properly modelling seasonal and cyclical effects

— and much more

e Recommended readings

— lots of free tutorials, short courses and handbooks covering
time-series online

— Hanck et al. (2019) Chapter 14 ‘Introduction to Time Series
Regression and Forecasting’
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