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Workshop Aims

• Introduce key concepts used to describe time-series

− trend, seasonality, irregular component

− stationarity

− auto-correlation and partial auto-correlation

• Introduce ARIMA models

− autoregressive (AR)

− moving average (MA)

− autoregressive, integration, moving average (ARIMA)

• Learn to forecast and estimate the causal impact of discrete
interventions
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What Are Time-Series?

• Any metric that is measured over regular time intervals makes a
time series

• Share the time dimension that we will see in longitudinal data

− but the focus is on one (or a few) subjects/entities

− across a much larger timespan

− the focus tends to be on forecasting based on observed past
patterns

− the modelling strategies are very different

• Predominantly employed in Economics and by business analysts

− to forecasts stock prices, changes in GDP

− to understand economic cycles, or seasonal sales of certain
products

• Although less frequent, also used in Sociology and Criminology

− estimate the deterrent effect of new (more punitive) laws

− estimate the extent to which public demonstrations are
seasonally determined
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Components of a Time-Series

• A time series can be broken down into its main components

− this helps understand, analyse, and model it

− and carry out forecasts

• Each data point (Yt) at time t in a time series can be expressed
as the combination of

− trend (Tt): the general tendency of a time series to increase,
decrease or stagnate over a long period of time

− seasonality (St): fluctuations within a regular period of time;

Ciclicality (Ct) can also be included to capture wider fluctuations

− irregular component (It): random variations, do not show a
particular pattern, unpredictable

• Combined as either a sum or a product

− additive model: Yt = Tt + St + It

assumes components are independent of each other

− multiplicative model: Yt = Tt × St × It

assumes components can affect one another
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Decomposition of Time-Series

New York Birth Time-Series (decomposed)

Source: Avril Coghlan

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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Multiplicative Model

Monthly sales for a souvenir shop at a beach resort town in
Queensland

Source: Avril Coghlan

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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Additive Model

Log of monthly sales for a souvenir shop at a beach resort town in
Queensland

Source: Avril Coghlan

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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Stationarity

• A time-series is said to be stationary if it holds the following
conditions true:

− the mean value of time-series is constant over time, i.e. the trend
component is nullified

− the variance does not increase over time

− seasonality effect is minimal

• It looks like random white noise irrespective of the observed
time interval

• In essence, stationarity means that the statistical properties of a
process generating a time series do not change over time

− to be able to model time-series we are going to seek to turn them
stationary
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ACF and PACF

• To help us decide the most appropriate model we are going to
rely on two useful diagnostic functions

• Auto-correlation function (ACF)

− gives us values of auto-correlation of any series with its lagged
values

− it describes how well the present value of the series is related to
its past values

− it can be used to inform the number of lags to be included in the
model

− ACF considers all the components in a time-series (T , S, C and
I) in the calculation of its correlations

− that is why it is know as a ‘complete auto-correlation plot’

• Partial auto-correlation function (PACF)

− instead of finding correlations of present values with lags, PACF
finds correlation of the residuals (remaining after removing the
effects explained by the earlier lags) with the next lag value

− ‘partial’ because we remove already found variations before
calculating the correlation

− can help us inform the model if there is any ‘hidden information’
in the residual which can be modelled by the next lag
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ARIMA Models

• The most common approach to model time-series

• Composed of an autoregressive (AR) part

− Associated with the ACF

• And a moving average (MA) part

− associated with the PACF

• Requires the time-serie(s) to be stationary

− to do so we can use differencing, aka integration (I)

− which stands for the I in ARIMA
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Differencing

• By subtracting each data point in the series from its successor
we can often turn a non-stationary time series stationary

− Y d
t = Yt − Yt−1

− useful to remove trends and cycles

• Sometimes higher order differences are necessary to achieve
stationarity

− often a second order difference is enough

− Y d2
t = Y d

t − Y d
t−1 = (Yt − Yt−1)− (Yt−1 − Yt−2)

• If the time series appears to be seasonal, a better approach is to
difference with respective season’s data points

− Y d
t = (Yt − Yt−s)− (Yt−1 − Yt−s−1)

− this can help to remove the seasonal effect
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Differencing

Stationary vs Non-stationary

Source: Troy Walters

https://datascienceplus.com/time-series-analysis-in-r-part-2-time-series-transformations/
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Auto-Regressive Models

• AR are linear models where the outcome variable is regressed on
its own lagged values

− Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p + et

− if a lag up to p is included in the model, the AR process is said
to be of order p

• To decide the order of the AR the model we can use the ACF

− which plots the level of auto-correlation at each lag

− and the 95% confidence interval to determine their statistical
significance
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Auto-Correlation Function

Source: Avril Coghlan

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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Moving Average Models

• MA are also linear models where the outcome variables is
regressed on its own imperfectly predicted lagged values

− Yt = θ0 + θ1et−1 + θ2et−2 + ...+ θqet−q + et

− if a lag up to q is included in the model, the MA process is said
to be of order q

• To decide the order of the MA the model we can use the PACF

− which plots the level of auto-correlation at each lag

− and the 95% confidence interval to determine their statistical
significance
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Partial Auto-Correlation Function

Source: Avril Coghlan

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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ARIMA Models

• An ARIMA(p, d, q) model is then defined as the combination of

− d integrations (differentiations)

− an AR model of order p

− and a MA model of order q

• Once the series is turn stationary following the integration
process, we have an ARMA(p, q) model

− Yt = δ + {ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p}+
{θ1et−1 + θ2et−2 + ...+ θqet−q}+ et

− this is the model to be estimated

− which can be used use to make predictions
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Predictions

• Once we have estimated our ARIMA model we can use it to
make predictions

− let’s assume a simple ARMA(1,1) model

− Yt = δ + ϕ1Yt−1 + θ1et−1 + et

• We can estimate future values of Y

− this is done sequentially

− we estimate the value for the next period (Yt+1) as

Ŷt+1 = δ + ϕ̂1Yt + θ̂1et

and then use that value to estimate the next period (Yt+2)

Ŷt+2 = δ + ϕ̂1Ŷt+1 + θ̂1êt+1

and so on

− the uncertainty of our predictions will grow as we move into the
future, away from t
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Detecting Causal Effects

• We can also use time-series analysis to detect the causal effect of
discrete interventions

− i.e. policies/events that take place at a specific date

− we can assess whether the time-series changes its properties after
the intervention took place

− ex.1: Did the 2018 minimum wage increase in Spain had an
impact on the unemployment rate?

− ex.2: Did the new sentencing guidelines increased sentence
severity in England and Wales?

− often referred as interrupted time-series models

• For these types of analyses we divide the time-series in two
parts

− we model the start of the time-series up to the last time point
before the intervention took place

− based in that model, we predict values for time periods following
the intervention

− then we compare the predicted against the observed values
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Detecting Causal Effects

Source: Pina-Sánchez et al. 2019

https://academic.oup.com/bjc/article-abstract/59/4/979/5366297
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Recap

• We have learnt about...

− the main components defining time-series (T , S, C, and I)

− the key statistics and properties to be considered in modelling
time-series (stationarity, ACF, and PACF)

− the main family of models for the analysis of time-series
(ARIMA)

• There is so much we have not covered though

− exponential-smoothing methods

− properly modelling seasonal and cyclical effects

− and much more

• Recommended readings

− lots of free tutorials, short courses and handbooks covering
time-series online

− Hanck et al. (2019) Chapter 14 ‘Introduction to Time Series

Regression and Forecasting’

https://www.econometrics-with-r.org/index.html
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− the main family of models for the analysis of time-series
(ARIMA)

• There is so much we have not covered though

− exponential-smoothing methods

− properly modelling seasonal and cyclical effects

− and much more

• Recommended readings

− lots of free tutorials, short courses and handbooks covering
time-series online

− Hanck et al. (2019) Chapter 14 ‘Introduction to Time Series

Regression and Forecasting’

https://www.econometrics-with-r.org/index.html
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