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Introduction
This is the second practical exercise from day 2 of the short course ‘Adjustment Methods for Data Quality
Problems: Missing Data, Measurement Error, and Misclassification.’ You can download the associated lecture
slides and data here: https://github.com/jmpinasanchez/measurement

In this workshop we will practice using SIMEX (Cook & Stefanski, 1994) and MC-SIMEX (Küchenhoff
et al., 2006) to adjust for different types of random measurement error and misclassification. To do
so we will employ the package simex (Lederer et al., 2019), and a couple of datasets derived from the
Cyber Security Breaches Survey, the Magistrates Court Sentencing Survey, and the Chronic Bronchitis and
Dust Concentration Study.

The former of those datasets is a survey conducted with managers from businesses, charities and education
establishments across the UK. It records all forms of cyberattacks to which these firms have been exposed,
together with participants’ knowledge of the problem, preventive strategies they have considered, and some
other general characteristics of the company. We will use this data to explore two research questions: i)
Which firms are more exposed to phishing attacks? And, ii) What makes their managers more willing to
adopt new measures to prevent future cyber security breaches? One of the key controls that we will employ
is the company’s size. This variable, just like the number of phishing attacks experienced in the last twelve
months, are likely affected by memory failures taking the form of multiplicative random errors. We will see
how the standard SIMEX method can be used to adjust for these types of measurement errors one by one, or
simultaneously. We will also see how SIMEX can be used to adjust for different types of outcome models,
such as linear and logit models.

In a follow up to this first exercise you will be asked to replicate the SIMEX adjustments we have explored up
to this point on your own, using a new dataset. Answers to this exercise will be made available at the end of
the workshop. The exercise is based on the Chronic Bronchitis and Dust Concentration Study, a dataset that
has been used extensively on the biomedic literature to illustrate the impact and adjustment of measurement
error and misclassifications (Gossl & Kuchenhoff, 2001; Kuchenhoff, Carroll, 1997). The study was conducted
between 1960 and 1977 in a Munich workspace to estimate the effect of dust concentration on the probability
of developing chronic bronchitis, where the concentration of dust is likely affected by classical measurement
error as a result of the unreliability of the measurement process, while the duration of the exposure is likely
affected by similar recall errors to those seen in the retrospective questions of the cybersecurity survey.

The second exercise is based on a dataset capturing sentences imposed in the magistrates court against
shoplifting offenders. Many of the key aggravating and mitigating factors taken into consideration by
magistrates in deciding whether to impose a custodial sentence are recorded in this dataset, amongst them is
the mitigating factor of the offender showing genuine remorse. However, there are reasons to believe this and
other mitigating and aggravating factors recorded in the dataset are misclassified, as the questionnaire is
designed in such a way that potential problems of item-missingness (e.g. the magistrate that imposed the
sentence skimming over that section of the questionnaire) are recorded as the aggravating/mitigating factor
not featuring in the case, i.e. a potential false negative. There is a rich literature exploring the weight that
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sentencers attribute to different aggravating and mitigating factors (for the case of remorse see Dhami &
Belton, 2023, or Maslen, 2015). Here, we will explore how robust is the estimated effect of remorse on the
probability of receiving a custodial sentence in the presence of different types of misclassification problems.

This exercise will also be followed up with an unsupervised practical using the Bronchitis study. Here you will
be asked to adapt your previous adjustments by taking into account a potential problem of misclassification
affecting one of the control variables, whether the participant was a smoker, which is is likely subject to
social desirability bias. As before, answers for this follow up exercise will be made available at the end of the
workshop.

Exercise 1A. Adjusting for recall errors in the Cyber Security
Breaches Survey
Here we are going to use a simplified version of the 2023 Cyber Security Breaches Survey, but to do so we
first need to sign the Access Agreement for Teaching, so please do so before we proceed. This form is required
by the UK Data Service to be able to use their data. In addition, we need to check that we comply with the
requirements established by the UK Data Service. In our case, this entails ensuring that the data does not
leave this room and is deleted when we complete the course. Because of such data security protocols it won’t
be possible to reproduce this exercise if you are following the practical remotely.
#Importing the data.
cyber = read.csv('cyber.csv')
#Remember to use the address of the folder where you saved the dataset.

In this simplified version of the Cyber Security Survey we have just five variables describing 1315 firms that
were subject to phishing attacks. These five variables represent: i) a broad definition of the company’s sector
(private sector, charity, or education establishment); ii) the size of the firm in terms of number of employees;
iii) whether they have a policy in place to protect against cyber crime; iv) whether the interviewee considers
that new measures are needed to prevent future breaches/attacks (response); and v) the number of phishing
attacks experienced over the last twelve months (phishcount). Let’s take a quick look at the dataset.
head(cyber)

## sector size policy response phishcount
## 1 private sector 3 1 0 1
## 2 private sector 2 0 0 5
## 3 private sector 4 0 0 1
## 4 private sector 2 0 0 2
## 5 private sector 8 0 0 2
## 6 private sector 3 0 0 20
table(cyber$sector, useNA="ifany")

##
## charity education private sector
## 353 271 691
summary(cyber)[,2:5]

## size policy response phishcount
## Min. : -97 Min. :0.00 Min. :0.00 Min. : -99
## 1st Qu.: 5 1st Qu.:0.00 1st Qu.:0.00 1st Qu.: 2
## Median : 40 Median :1.00 Median :0.00 Median : 6
## Mean : 490 Mean :0.62 Mean :0.26 Mean : 603
## 3rd Qu.: 200 3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.: 35
## Max. :90000 Max. :1.00 Max. :1.00 Max. :100000
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Notice how there are some strange negative cases in both size and phishcount. These reflect instances where
the participant declined to respond or they responded that they did not know the answer. In this part of the
workshop we will set them as missing cases and ignore them using listwise deletion, but when we explore
Bayesian adjustments we will get back to this problem to demonstrate how we can adjust for missing data
and measurement error simultaneously.
#Setting non-responses as missing data.
cyber$size = ifelse(cyber$size<0, NA, cyber$size)
cyber$phishcount = ifelse(cyber$phishcount<0, NA, cyber$phishcount)

We conclude our ‘data cleaning’ by undertaking log-transformations for size and phishcount. These two
variables are heavily right-skewed, which makes their log-transformation a useful strategy to avoid problems
with outliers exerting an undue influence. Moreover, taking the natural logarithms of those two variables will
help us simplify the measurement error mechanisms to which they are exposed.
#Log-transforming two heavily right-skewed variables.
cyber$logsize = log(cyber$size)
cyber$logphish = log(cyber$phishcount)

We theorise that survey reports of both the number of employees in one’s company, and the number of
phishing attacks experienced, are subject to memory failures, which will likely take the form of random
multiplicative errors (X∗ = X · U). This is because the bigger the actual value (Xi) the harder it is to recall
it accurately, hence, the further away the observed value (X∗

i ) will be.

The package simex has different built-in measurement error models that can be explored. Here we will
consider classical errors and misclassifications. As far as I am aware this package does not have an option for
multiplicative errors. However, by log-transforming size and phishcount we can transform their measurement
error process into a classical additive error, since log(X∗) = log(X · U) = log(X) + log(U), which means that
we will be able to use the standard form of SIMEX to undertake the measurement error adjustments that we
anticipate.

We can now proceed to explore our first question: Which types of firms tend to experience more phishing
attacks? To do so we will start with a naive model where we assume perfectly measured variables. We will
use a linear model for convenience, however, notice that even after log-transforming phishcount it is still
right-skewed. Hence, we should be mindful about the robustness of the standard errors from this model.
#Notice that logphish is not normally distributed.
hist(cyber$logphish, cex.lab=0.8, cex.axis=0.8, cex.main=0.8)
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naive_phish = lm(logphish ~ logsize + sector + policy, data=cyber, x=TRUE)
#To use SIMEX we have to include the option 'x=TRUE' in our naive model.
#This is so the model matrix used in the fitting process is included as a component
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#of the returned value in our object 'naive_phish'.
summary(naive_phish)

##
## Call:
## lm(formula = logphish ~ logsize + sector + policy, data = cyber,
## x = TRUE)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.450 -1.478 -0.237 1.155 9.105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2628 0.1732 7.29 5.9e-13 ***
## logsize 0.1900 0.0318 5.98 3.0e-09 ***
## sectoreducation 0.0508 0.1738 0.29 0.77005
## sectorprivate sector 0.4942 0.1420 3.48 0.00052 ***
## policy 0.3455 0.1277 2.71 0.00693 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.9 on 1116 degrees of freedom
## (194 observations deleted due to missingness)
## Multiple R-squared: 0.0543, Adjusted R-squared: 0.0509
## F-statistic: 16 on 4 and 1116 DF, p-value: 9.49e-13

We can see that company size is positively associated with the number of phishing attacks. The coefficient
is rather small and lower than one, meaning a diminishing marginal rate of phishing attacks as companies
get bigger. Education establishments and charities are targeted at roughly the same rate, but private sector
firms are attacked at a statistically significant higher rate, a 64% higher rate to be precise (see in the code
below how this figure is estimated), which is not really a substantial difference. Having an anti-cybercrime
policy in place also has a positive effect. I suspect this is the result of a reverse causal path.
#Calculating the effect of private sector firms in relative terms.
(exp(naive_phish$coefficients[4])-1)*100

## sectorprivate sector
## 64

Ok, but we anticipated that both logsize and logphish are subject to classical measurement error. Let’s
explore the impact those types of errors could have on the estimates from our naive model. We can start by
focusing on the errors present in logsize first. we will look at logphish later since we know that classical errors
on the outcome variable will only affect our measures of uncertainty and therefore we can take it as a less
problematic form of measurement error.

We anticipated that the errors will be random additive (X∗ = X + U), but we do not know their standard
deviation (σU ), which means that we do not know the reliability of our error-prone variables (ρX∗). We
could estimate them directly if we were to repeat the same question at different times for a subgroup of our
sample. However, since we are using secondary data, we cannot undertake such assessment. The next step
should be to consider studies in the literature which have carried out estimations of the reliability of similar
questions. However, given the rather niche topic and recent publication of the survey, I do not think there
are studies that have explored the validity or reliability of this specific question. We could still try to look for
studies that have explored other questions that are nonetheless similar enough in terms of salience and recall
timeframe. Here, we will simply try to come up with a range of ‘sensible’ estimates.
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To run SIMEX we will need an estimate of the standard deviation of the error term. This task can be made more
intuitive if we consider instead the reliability ratio of the observed variable (ρX∗ = σ2

X/σ2
X∗ = σ2

X/(σ2
X +σ2

U )),
and then derive the standard error of the error term from there. We could also consider that recalling the
number of employees should be markedly more accurate than recalling the number of phishing attacks, since
the former is more memorable and stable across time, but also because it is a key characteristic of the
company that is quite relevant to managers. As such, I suggest exploring reliability ratios for logsize between
0.9 and 0.95. To find out the standard deviation of error term that corresponds to each of those reliability
ratios we can follow these three steps: i) rearrange the formula of the reliability ratio to derive the variance
of the true value (σ2

X = ρX∗σ2
X∗); ii) rearrange the variance of the error prone variable to derive the variance

of the error term (σ2
U = σ2

X∗ − σ2
X); iii) take the square root of the variance of the error term.

#Calculating the sd(U) for a reliability ratio of 0.95.
#VarX = RhoX*VarX*
varX_95 = 0.95 * var(cyber$logsize, na.rm = TRUE)
#VarU = VarX*-VarX
varU_95 = var(cyber$logsize, na.rm = TRUE) - varX_95
sdU_95 = sqrt(varU_95)
#You can use the reliability ratio formula again to check that we got the right
#sd(U) for a 0.95 reliability ratio.
varX_95 / (varX_95 + varU_95)

## [1] 0.95
#Calculating the sd(U) for a reliability ratio of 0.90
varX_90 = 0.9 * var(cyber$logsize, na.rm = TRUE)
varU_90 = var(cyber$logsize, na.rm = TRUE) - varX_90
sdU_90 = sqrt(varU_90)

We are now ready to undertake a couple of adjustments assuming that logsize is affected by classical errors
with a reliability ratio of 0.95 and 0.90. Let’s start with 0.95 first.
#install(simex) #Make sure you have the simex package installed.
library(simex)
#We should also specify a seed so we can get the same results in our simulations
#of random errors.
set.seed=7
#To undertake the simex adjustment we need to indicate the model to be adjusted,
#the error prone variable, and the standard error of the measurement error term.
adj_size95 = simex(naive_phish, SIMEXvariable="logsize", measurement.error=sdU_95,

asymptotic=FALSE)
#We also declare asymptotic=FALSE, so we only get estimates of uncertainty
#derived empirically through the Jackknife method. These take longer to compute,
#but we can expect them to be more accurate since our outcome variable (and
#probably the residuals of the model too) are not normally distributed.
summary(adj_size95)

## Call:
## simex(model = naive_phish, SIMEXvariable = "logsize", measurement.error = sdU_95,
## asymptotic = FALSE)
##
## Naive model:
## lm(formula = logphish ~ logsize + sector + policy, data = cyber,
## x = TRUE)
##
## Simex variable :
## logsize
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## Measurement error : 0.48
##
##
## Number of iterations: 100
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.5 -1.5 -0.3 0.0 1.1 9.1
##
## Coefficients:
##
## Jackknife variance:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2098 0.1774 6.82 1.5e-11 ***
## logsize 0.2061 0.0336 6.13 1.2e-09 ***
## sectoreducation 0.0343 0.1738 0.20 0.84339
## sectorprivate sector 0.5088 0.1424 3.57 0.00037 ***
## policy 0.3256 0.1285 2.53 0.01140 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression coefficients in our adjustment are relatively similar to those from the naive model.
That makes sense since we are assuming a very small share of noise in logsize. To compare the two models
more clearly we can bring together their $coefficients using a table.
#Creating a table with estimates from the naive model and the SIMEX adjustment.
results = cbind(naive_phish$coefficients, adj_size95$coefficients)
# Apply formatting to control decimal places.
results = round(results, digits = 3)
colnames(results) = c("naive_phish","adj_size95")
results

## naive_phish adj_size95
## (Intercept) 1.263 1.210
## logsize 0.190 0.206
## sectoreducation 0.051 0.034
## sectorprivate sector 0.494 0.509
## policy 0.346 0.326

Before we move forward it is always good practice to check that the simulation-extrapolation process was
carried out sensibly. To do so we can plot the simex curves for each of our regression coefficients.
#The SIMEX curves for our first adjustment.
plot(adj_size95, mfrow= c(2,3))
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We can see how for increasing levels of measurement error (σU · (1 + λ)) there is a corresponding increasing
level of bias, and that this relationship seems stable enough so we can estimate it precisely. In addition, we
can see that for most of the model coefficients the relationship between errors and bias is either linear or
slightly quadratic, which can be represented well enough using a quadratic function, the function used by
default in the simex package.

If you wanted to specify a different extrapolation you can use the fitting.method option, which allows you
to use a linear and a non-linear function, in addition to the default quadratic function. Let’s repeat the
adjustment considering now a linear function.
#The adjustment assuming a linear SIMEX function.
adj_size95_linear = simex(naive_phish, SIMEXvariable="logsize",

measurement.error=sdU_95, asymptotic=FALSE,
fitting.method="linear")

plot(adj_size95_linear, mfrow= c(2,3))
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In our current example, using a linear function gives us practically the same results.

One more option worth knowing is lambda. We can use this option to increase the number of measurement-
error-to-bias points, so we can estimate the SIMEX function more precisely, which should in turn lead to
a more precise adjustment. The downside of doing this is the additional computation burden that we add,
although for a model as simple, and a dataset as small, as the ones we are using here, it will not be a problem.
#The SIMEX adjustment requesting 20 levels of measurement error, instead of the
#standard five levels.
adj_size95 = simex(naive_phish, SIMEXvariable="logsize", measurement.error=sdU_95,

asymptotic=FALSE, lambda = seq(.1, 2, by = .1))
plot(adj_size95, mfrow= c(2,3))
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Ok, let’s now undertake the adjustment assuming a 0.90 reliability ratio for logsize. Remember that since we
do not really know what the reliability ratio is, it is a good idea to use a range of values rather than just one.
See if you can do this yourself following two steps: i) calling the SIMEX adjustment as we did before but
changing the measurement.error option; ii) check that the SIMEX function used seems appropriate; and iii)
try to compare results by bringing together the naive model and the two adjustments (with reliability 0.95
and 0.90) in a table.

################# REMOVE THIS FROM THE HANDOUT #################
#The adjustment assuming a reliability ratio of 0.90 for logsize.
adj_size90 = simex(naive_phish, measurement.error=sdU_90,

SIMEXvariable = "logsize", asymptotic=FALSE)
summary(adj_size90)
plot(adj_size90, mfrow= c(2,3))

We can see how the SIMEX function is clearly quadratic, hence, keeping the default option is the best choice.
#Combining results for the naive model and the two adjustments.
results = cbind(naive_phish$coefficients, adj_size95$coefficients,

adj_size90$coefficients)
results = round(results, digits = 3)
colnames(results) = c("naive_phish","adj_size95","adj_size90")
results

## naive_phish adj_size95 adj_size90
## (Intercept) 1.263 1.212 1.159
## logsize 0.190 0.205 0.222
## sectoreducation 0.051 0.037 0.026
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## sectorprivate sector 0.494 0.512 0.527
## policy 0.346 0.325 0.303

We can see that for a 0.90 logsize reliability, the previously observed biases are accentuated, however their
magnitude is still relatively negligible.

####################### UP TO HERE #######################

To report the impact of measurement error more intuitively we can estimate the relative bias. To do so we
first estimate the absolute bias (Bias = β̂naive − βtrue) then we express it in relative terms using the true
estimate (i.e. our adjustment) as the denominator (RBias = (Bias/βtrue)100%).1 So, assuming our latest
adjustment with a 0.90 reliability ratio for logsize leads to the true regression coefficients, we can estimate
the relative biases in our naive model as follows:
#Expressing the impact of measurement error in terms of relative bias.
Bias = naive_phish$coefficients - adj_size90$coefficients
RBias = Bias / adj_size90$coefficients
RBias

## (Intercept) logsize sectoreducation
## 0.090 -0.143 0.963
## sectorprivate sector policy
## -0.063 0.139

Leaving aside sector : education which was not statistically significant and hence unreliably estimated, we
can see that the strongest biases are for policy and logsize, which effects were roughly 13% stronger and
weaker, respectively (the exact figure will vary slightly as a result of the simulation process), than what was
estimated in the naive model.

Ok, we can now move on to see how SIMEX can be used to adjust for multiple variables affected by
measurement error, including the outcome variable. At the start of the exercise we mentioned how we would
expect the recall of the number of phishing attacks to be less precise than that of the company’s size, so we
will consider reliability ratios of 0.8 for logphish and 0.90 for logsize.
#Calculating the sd(U) for logphish and a reliability ratio of 0.80.
#VarX = RhoX*VarX*
varX_80_phish = 0.8 * var(cyber$logphish, na.rm = TRUE)
#VarU = VarX*-VarX
varU_80_phish = var(cyber$logphish, na.rm = TRUE) - varX_80_phish
sdU_80_phish = sqrt(varU_80_phish)

#The SIMEX adjustment with reliability ratios 0.90 and 0.80 for company's size
#and number of phishing attacks.
adj_size90_phish80 = simex(naive_phish, SIMEXvariable = c("logsize","logphish"),

measurement.error = cbind(sdU_90, sdU_80_phish),
asymptotic=FALSE)

summary(adj_size90_phish80)
plot(adj_size90_phish80, mfrow= c(2,3))

#Combining results for the naive model and adjustments of one and two variables
results = cbind(naive_phish$coefficients, adj_size90$coefficients,

adj_size90_phish80$coefficients)
results = round(results, digits = 3)

1Another measure commonly used to report the impact of measurement error, missing data, or other unmet assumptions
is the root mean squared error. This combines the impact in terms of bias (accuracy) with the impact on the measures of
uncertainty (the added variance or loss of precision), RMSE =

√
Bias2 + V ar. The RMSE is particularly useful to assess the

impact of unmet assumptions in studies seeking to predict rather than to explain (e.g. what are the number of phishing attacks
to be experienced by a given firm?). To explore causal questions (e.g. by how much are phishing attacks reduced following the
implementation of a preventive policy?), I would use the RBias as I find it more intuitive.
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colnames(results) = c("naive_phish","adj_size90","adj_size90_phish80")
results

## naive_phish adj_size90 adj_size90_phish80
## (Intercept) 1.263 1.159 1.167
## logsize 0.190 0.222 0.219
## sectoreducation 0.051 0.026 0.032
## sectorprivate sector 0.494 0.527 0.507
## policy 0.346 0.303 0.306

The adjusted regression coefficients when considering classical measurement error in the outcome variable are
quite similar to those observed in our previous adjustment. This is to be expected since classical measurement
error in the outcome variable is known to affect only the measures of uncertainty of the model. We can see if
that is the case.
#Combining results for the naive model and adjustments of one and two variables
SEs = cbind(summary(naive_phish)$coefficients[,2],

summary(adj_size90)$coefficients$jackknife[,2],
summary(adj_size90_phish80)$coefficients$jackknife[,2])

colnames(SEs) = c("naive_phish","adj_size90","adj_size90_phish80")
SEs

## naive_phish adj_size90 adj_size90_phish80
## (Intercept) 0.173 0.185 0.188
## logsize 0.032 0.037 0.039
## sectoreducation 0.174 0.175 0.173
## sectorprivate sector 0.142 0.143 0.140
## policy 0.128 0.130 0.114

Actually, the difference in the standard errors when we consider random errors in the outcome variable is
negligible, so we can safely assume that the recall errors affecting logphishing can be safely ignored. Still,
we should consider additional combinations of reliability ratios to provide a more complete picture of the
potential impact of measurement error. For example, it might be worth reducing the reliability ratio for
logphishing down to 0.70.

In the interest of time we are going to move on to illustrate another important feature of SIMEX that
highlights its versatility; namely, how it can also be adopted to adjust for measurement error in non-linear
models. We are going to use a logit model to explore which is the stronger predictor when it comes to
convince managers that they need to put in place new preventive measures to protect their companies against
cybercrime.
#Estimating the naive logit model.
naive = glm(response ~ logsize + logphish + sector + policy, data=cyber, x=TRUE,

family="binomial")
summary(naive)

##
## Call:
## glm(formula = response ~ logsize + logphish + sector + policy,
## family = "binomial", data = cyber, x = TRUE)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.0601 0.2194 -9.39 < 2e-16 ***
## logsize 0.1746 0.0376 4.64 3.5e-06 ***
## logphish 0.0191 0.0353 0.54 0.5876
## sectoreducation -0.0137 0.2001 -0.07 0.9454
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## sectorprivate sector 0.0277 0.1694 0.16 0.8703
## policy 0.4298 0.1596 2.69 0.0071 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1292.1 on 1120 degrees of freedom
## Residual deviance: 1242.6 on 1115 degrees of freedom
## (194 observations deleted due to missingness)
## AIC: 1255
##
## Number of Fisher Scoring iterations: 4

We find that the company’s sector does not seem to affect the probability of considering new preventive
measures, surprisingly, nor does the number of phishing attacks experienced. This could be potentially
explained by having controlled for size, which is positively correlated with the probability of implementing
protective measures, and as before, so does the fact of already having a protective policy in place.

We can proceed to test the robustness of the estimates from the naive model by considering the potential
impact of measurement error in logsize.
#The SIMEX adjustment.
adj_size90 = simex(naive, SIMEXvariable = "logsize",

measurement.error = sdU_90, jackknife.estimation = FALSE)
#By specifying jackknife.estimation=FALSE we are indicating that we want to
#estimate the asymptotic variance instead, which is faster and should not be
#biased.
summary(adj_size90)

## Call:
## simex(model = naive, SIMEXvariable = "logsize", measurement.error = sdU_90,
## jackknife.estimation = FALSE)
##
## Naive model:
## glm(formula = response ~ logsize + logphish + sector + policy,
## family = "binomial", data = cyber, x = TRUE)
##
## Simex variable :
## logsize
## Measurement error : 0.68
##
##
## Number of iterations: 100
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.60 -0.29 -0.19 0.00 0.51 0.88
##
## Coefficients:
##
## Asymptotic variance:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.1496 0.2220 -9.68 < 2e-16 ***
## logsize 0.2031 0.0426 4.77 2.1e-06 ***
## logphish 0.0132 0.0383 0.35 0.730
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## sectoreducation -0.0306 0.1982 -0.15 0.877
## sectorprivate sector 0.0566 0.1672 0.34 0.735
## policy 0.3984 0.1593 2.50 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(adj_size90, mfrow= c(2,3))
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When we adjust for measurement error in logsize we see that its effect had been artificially attenuated,
while the effect of policy was unduly inflated. However, as before, none of the regression coefficients are
substantially impacted to lead us to wrong inferences, hence we can state that our results are robust to
measurement error in logsize. To be more throrough we can also explore the impact of the measurement
error affecting logphish. See if you can do this by replicating the code that we used before to adjust for
measurement error in multiple variables.

################# REMOVE THIS FROM THE HANDOUT #################
#The SIMEX adjustment
adj_size90_phish80 = simex(naive, SIMEXvariable = c("logsize","logphish"),

measurement.error=cbind(sdU_90, sdU_80_phish),
jackknife.estimation = FALSE)

summary(adj_size90_phish80)
plot(adj_size90_phish80, mfrow= c(2,3))
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We see that the errors in logphish have practically a null impact. In fact it is worth noticing here how the
SIMEX adjustment did not ‘work’ for logphish, as there does not seem to be a clear relationship between
increasing levels of measurement error and bias, hence we cannot estimate a reliable SIMEX function and
extrapolate to a point of no measurement error. This is probably because the relationship between logphish
and response was already quite noisy (it was not significant), so the addition of more noise does not modify
that already non-existent relationship. This is a useful example that illustrate the importance of checking
your SIMEX plots before trusting their adjustments blindly.

####################### UP TO HERE #######################

Exercise 1B. Adjusting for recall errors in dust exposure
In this exercise you are requested to apply the SIMEX adjustments that we have seen so far to a different
study exploring the relationship between dust concentration in the working place and the occurrence of
chronic bronchitis.

Workplace exposure to toxic particles and their effect in the development of disease or disability represents a
vast area of research in occupational studies and epidemiology more generally. Often these kind of studies seek
to estimate a tolerable level of exposure to such toxic particles that can be experienced without developing
adverse effects, i.e. before they lead to serious diseases or disability. Findings from these types of studies
are then used to determine a threshold limiting value (TLV) to guide public policy or sector regulations.
Providing accurate estimates is therefore essential. However, as you can expect, many of the variables used in
these types of studies are prone to measurement error.

Using what you have learnt so far, see if you could enhance the robustness in the estimation of the effect of
dust concentration in the workplace on the development of chronic bronchitis. Let’s start by taking a quick
look at the data.
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#Importing the data.
load(file='bronch.rda')
#Quick exploratory analysis.
head(bronch)

## cbr dust smoking expo
## 1 0 0.18 1 5
## 2 0 0.22 1 4
## 3 0 0.22 1 4
## 4 0 0.22 1 4
## 5 0 0.22 1 8
## 6 0 0.22 1 8
summary(bronch)

## cbr dust smoking expo
## Min. :0.00 Min. :0.2 0:325 Min. : 3
## 1st Qu.:0.00 1st Qu.:0.4 1:921 1st Qu.:16
## Median :0.00 Median :0.9 Median :25
## Mean :0.23 Mean :1.1 Mean :25
## 3rd Qu.:0.00 3rd Qu.:1.8 3rd Qu.:33
## Max. :1.00 Max. :3.2 Max. :66

We can see that 23.4% of the sample developed chronic bronchitis (cbr). This will be used as our outcome
variable. The main covariate of interest is dust concentration in miligrams per cubic metre (dust), which
could be expected to be affected by classical measurement error since measurements could vary depending
on random factors like - I am speculating here - whether the room was ventilated before the measurements
were taken, whether it had been cleaned recently, or the number of people attending the workplace that day.
We also have a couple of controls, whether the participant is a smoker (smoking), and the level of exposure
(expo) measured by the reported number of years the participant has been working on that same workplace,
which could be affected by similar memory failures to what we have seen in the previous exercise.
#Estimating the naive model
naive_bronch = glm(cbr ~ dust + smoking + expo, x=T, family= binomial,

data=bronch)
summary(naive_bronch)

##
## Call:
## glm(formula = cbr ~ dust + smoking + expo, family = binomial,
## data = bronch, x = T)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.1754 0.2611 -12.16 < 2e-16 ***
## dust 0.3592 0.0938 3.83 0.00013 ***
## smoking1 0.6815 0.1743 3.91 9.3e-05 ***
## expo 0.0401 0.0062 6.46 1.1e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1356.8 on 1245 degrees of freedom
## Residual deviance: 1279.1 on 1242 degrees of freedom
## AIC: 1287
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##
## Number of Fisher Scoring iterations: 4

We can see that the three explanatory variables are statistically significant and pointing in the expected
direction. Specifically, we estimate that the association between dust and cbr, expressed as an odds-ratio is
1.43. That is, everything else being constant, for every additional unit (mg/m3) of dust in the workplace the
odds of developing chronic bronchitis increase by 43%.
#The estimated relationship between dust and cbr, according to the naive model.
exp(naive_bronch$coefficients[2])

## dust
## 1.4

You are now requested to undertake SIMEX adjustments to explore the robustness of the above estimate. To
do so consider the following four steps: i) calculate a range of sensible standard deviations for the measurement
error in dust; ii) undertake SIMEX adjustments based on the different levels of measurement error in dust
you have considered; iii) try to bring together your regression coefficients in a table to compare them more
clearly, if you want even try to calculate the relative bias for the relationship of interest; iv) repeat the same
process by considering measurement error in expo too.

################# REMOVE THIS FROM THE HANDOUT #################
#Calculating the sd(U) in dust for a reliability ratio of 0.90.
#VarX = RhoX*VarX*
varX_90 = 0.9 * var(bronch$dust, na.rm = TRUE)
#VarU = VarX*-VarX
varU_90 = var(bronch$dust, na.rm = TRUE) - varX_90
sdU_90 = sqrt(varU_90)
#Calculating the sd(U) in dust for a reliability ratio of 0.80.
#VarX = RhoX*VarX*
varX_80 = 0.80 * var(bronch$dust, na.rm = TRUE)
#VarU = VarX*-VarX
varU_80 = var(bronch$dust, na.rm = TRUE) - varX_80
sdU_80 = sqrt(varU_80)

#SIMEX adjustment for a dust reliability ratio of 0.90.
adj_dust90 = simex(naive_bronch, SIMEXvariable="dust", measurement.error=sdU_90,

jackknife.estimation = FALSE)
#summary(adj_dust90)
#plot(adj_dust90, mfrow= c(2,2))

#SIMEX adjustment for a dust reliability ratio of 0.90.
adj_dust80 = simex(naive_bronch, SIMEXvariable="dust", measurement.error=sdU_80,

jackknife.estimation = FALSE)
#summary(adj_dust80)
#plot(adj_dust80, mfrow= c(2,2))

#Combining results for the naive model and adjustments of a 0.90 and a 0.80
#reliability ratio for dust.
results = cbind(naive_bronch$coefficients, adj_dust90$coefficients,

adj_dust80$coefficients)
colnames(results) = c("naive_bronch","adj_dust90","adj_dust80")
results = round(results, digits = 3)
results

## naive_bronch adj_dust90 adj_dust80
## (Intercept) -3.17 -3.22 -3.26

16



## dust 0.36 0.40 0.45
## smoking1 0.68 0.68 0.68
## expo 0.04 0.04 0.04
#Calculating the relative bias when the reliability of dust is 0.80.
Bias = naive_bronch$coefficients - adj_dust80$coefficients
RBias = Bias / adj_dust80$coefficients
RBias

## (Intercept) dust smoking1 expo
## -0.0267 -0.1961 0.0013 0.0108

The effect of dust concentration is considerably stronger (about 15% stronger) than previously assumed
under a naive model. Hence, tolerance levels should be reduced in any regulation that was adopted based
on this study. How much should acceptable tolerance levels being lowered depends on how reliable dust
measurements truly are. If we can safely assume that they are 80% reliable we could suggest roughly a 15%
reduction in the tolerance level.

We can also examine the impact stemming from years of exposure being also affected by measurement error
in the form of recall errors. To adjust for those errors we can follow the modelling strategy we undertook in
the previous exercise and log-transform this variable before we introduce it in our model.
#Log-transforming exposure.
bronch$logexpo = log(bronch$expo)
#The naive model including the log-transformed version of exposure.
naive_bronch = glm(cbr ~ dust + smoking + logexpo, x=T, family= binomial,

data=bronch)
summary(naive_bronch)

##
## Call:
## glm(formula = cbr ~ dust + smoking + logexpo, family = binomial,
## data = bronch, x = T)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.2818 0.5262 -10.04 < 2e-16 ***
## dust 0.3469 0.0939 3.69 0.00022 ***
## smoking1 0.6657 0.1742 3.82 0.00013 ***
## logexpo 1.0061 0.1510 6.66 2.7e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1356.8 on 1245 degrees of freedom
## Residual deviance: 1270.8 on 1242 degrees of freedom
## AIC: 1279
##
## Number of Fisher Scoring iterations: 4

I suggest considering a 90% reliability ratio since recalling the number of years working in the same place
should be fairly accurate.
#Calculating the sd(U) for a reliability ratio of 0.90 for logexpo.
#VarX = RhoX*VarX*
varX_90_logexpo = 0.9 * var(bronch$logexpo, na.rm = TRUE)
#VarU = VarX*-VarX
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varU_90_logexpo = var(bronch$logexpo, na.rm = TRUE) - varX_90_logexpo
sdU_90_logexpo = sqrt(varU_90_logexpo)

#SIMEX adjustment for a 0.80 reliability in dust and 0.90 in logexpo.
adj_dust80_expo90 = simex(naive_bronch, SIMEXvariable=c("dust","logexpo"),

measurement.error=cbind(sdU_80, sdU_90_logexpo),
jackknife.estimation = FALSE)

#summary(adj_dust80_expo90)
#plot(adj_dust80_expo90, mfrow= c(2,3))

#Combining results for the naive model and the adjustment with 0.80 and 0.90
#reliability ratios for dust and logexpo.
results = cbind(naive_bronch$coefficients, adj_dust80_expo90$coefficients)
colnames(results) = c("naive_bronch","adj_dust80_expo90")
results

## naive_bronch adj_dust80_expo90
## (Intercept) -5.28 -5.82
## dust 0.35 0.42
## smoking1 0.67 0.67
## logexpo 1.01 1.15
#Calculating the relative bias when the reliability of dust is 0.80
Bias = naive_bronch$coefficients - adj_dust80_expo90$coefficients
RBias = Bias / adj_dust80_expo90$coefficients
RBias

## (Intercept) dust smoking1 logexpo
## -0.0920 -0.1721 -0.0053 -0.1225

We observe the expected attenuation effect for logexpo, but similar effects for all other variables, including
dust. The effect of dust concentration on developing chronic bronchitis remains biased downwards by more
than 10% if we ignore the problem of measurement error in our dataset.

####################### UP TO HERE #######################

Exercise 2A. Assessing the robustness of the mitigating effect of
remorse when it is subject to misclassification
In this exercise we are going to estimate the extent to which showing remorse mitigates sentence severity.
To do so we are going to use the dataset ‘theft_MCSS_simplified.csv’. This is a simplified version of the
Magistrates Court Sentencing Survey, which was compiled by the Sentencing Council for England and Wales.
Magistrates across different courts were sampled and asked to report the sentence imposed and the main
characteristics of the case.
#Importing the data.
mcss = read.csv('theft_MCSS_simplified.csv')

The simplified dataset that we will be using is composed of 2116 cases and seven variables. The first three
variables capture different aggravating factors listed in the sentencing guidelines. The following two variables
represent mitigating factors also from the guidelines. Amongst them is remorse, our main variable of interest.
In addition, we have a variable capturing the gender of the offender (male), and our outcome variable, whether
the offender received a custodial sentence (custody).
head(mcss)

## injury prev_cons on_bail mental_disorder remorse male custody
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## 1 0 1 0 0 1 1 0
## 2 0 0 0 0 0 1 0
## 3 0 1 0 0 1 0 0
## 4 0 1 0 0 1 1 0
## 5 1 1 0 0 0 0 1
## 6 0 1 0 0 0 0 1
summary(mcss)

## injury prev_cons on_bail mental_disorder remorse
## Min. :0.00 Min. :0.00 Min. :0.00 Min. :0.00 Min. :0.00
## 1st Qu.:0.00 1st Qu.:1.00 1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0.00
## Median :0.00 Median :1.00 Median :0.00 Median :0.00 Median :0.00
## Mean :0.01 Mean :0.84 Mean :0.17 Mean :0.05 Mean :0.16
## 3rd Qu.:0.00 3rd Qu.:1.00 3rd Qu.:0.00 3rd Qu.:0.00 3rd Qu.:0.00
## Max. :1.00 Max. :1.00 Max. :1.00 Max. :1.00 Max. :1.00
## male custody
## Min. :0.00 Min. :0.00
## 1st Qu.:0.00 1st Qu.:0.00
## Median :1.00 Median :0.00
## Mean :0.72 Mean :0.29
## 3rd Qu.:1.00 3rd Qu.:1.00
## Max. :1.00 Max. :1.00

When inspecting the data we can see that all the variables are binary. We can also see that 29% of sentences
imposed are custodial sentences, 72% of offenders are male, and judges only took into account offenders’
remorse in just 16% cases. This strikes me as a relatively low prevalence of remorse, especially if we consider
that roughly two/thirds of offenders sentenced in the magistrates’ court plead guilty (Ministry of Justice,
2023). I propose that the recording of this mitigating factor is susceptible to false negatives, a point that
becomes clearer upon closer examination of the questionnaire used to collect the data.

Figure 1: MCSS questionnaire: Mitigating factors

The MCSS questionnaire is available in the same webpage where the original data is stored, here. Figure 1 is
a snapshot of the specific question used to retrieve the mitigating factors present in the case. As you can
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see the question follows the format of a ‘multi select multiple choice question’. This means that unless the
option ‘No relevant mitigating factors’ is ticked, we cannot be sure whether the absence of a tick in a given
factor (including remorse) is due to that mitigating factor not being present in that case, or as a result of
item-missingness (i.e. non-response), which could take place when the questionnaire is filled in a rush.

To explore the robustness of the association between remorse and the probability of receiving a custodial
sentence, when false negatives are present in remorse, we should start - as always - estimating our naive
model.
#To be able to run mc.simex we need to make sure the misclassified variable is
#of class factor.
mcss$remorse = as.factor(mcss$remorse)
#I use the symbol '.' to take all other variables in the dataset as explanatory
#variables in the model, which simplifies the code.
naive = glm(custody ~ ., x=T, family= binomial, data=mcss)
summary(naive)

##
## Call:
## glm(formula = custody ~ ., family = binomial, data = mcss, x = T)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.340 0.311 -10.75 < 2e-16 ***
## injury 1.992 0.517 3.85 0.00012 ***
## prev_cons 2.265 0.303 7.49 7.0e-14 ***
## on_bail 1.644 0.129 12.75 < 2e-16 ***
## mental_disorder -1.464 0.336 -4.35 1.3e-05 ***
## remorse1 -0.777 0.175 -4.44 9.0e-06 ***
## male 0.223 0.123 1.81 0.06983 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2552.5 on 2115 degrees of freedom
## Residual deviance: 2137.6 on 2109 degrees of freedom
## AIC: 2152
##
## Number of Fisher Scoring iterations: 6

We can see that all the factors included in the sentencing guidelines point in the expected direction, aggravating
factors increase the probability of receiving a custodial sentence and mitigating factors reduce that probability.
In addition, we can also see how the male effect is non-sginificant, which suggests that judges do not take the
offender’s gender into account, i.e. there are no unwarranted gender disparities.

To assess the proportion of cases where remorse is wrongly coded as a 0, when in fact should be considered a
missing value, we can look at ‘single-choice questions’ included in the same questionnaire that allow for the
recording of a non-response. A good example is the question on ‘Culpability and Harm category’. These are
not included in the simplified dataset that we are using, but if you download the original data you will find
that 7.2% of questions about culpability and 12.7% about harm were left unanswered.

The lower response rate for harm is probably a result of appearing after culpability in the questionnaire. If
so, the presence of missing cases for remorse could be placed at a minimum of 20%, possibly more, given how
buried it is in the questionnaire. However, only a fraction of those missing cases should be interpreted as
indicating the presence remorse; the remainder will be missing when remorse was truly absent, leading to a
correct classification, even if accidentally. So, I would suggest considering 5% and 10% false negative rates.
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Figure 2: MCSS questionnaire: Culpability and Harm category

Let’s try then two adjustments, one assuming a 90% sensitivity (i.e. 10% false negatives), and another for an
80% sensitivity (i.e. 20% false negatives). We need to specify these two matrices so we can determine the
MC.SIMEX adjustment for the expected level of misclassification in remorse.

This can be a bit confusing at first, but it gets clearer once you practice it a few times. It helps if we think
first how a general 2X2 misclassification matrix looks like, which we can then use as a template for our own
adjustments.

## X=0 X=1
## X*=0 "Specificity" "False negative"
## X*=1 "False positive" "Sensitivity"
#Specifying the misclassification matrix for a 90% specificity.
mc.remorse_90SN = matrix(c(1,0,0.10,0.90),nrow=2)
#To run mcsimex we need the same labels from the misclassified factor used as
#row and column labels in the misclassification matrix.
dimnames(mc.remorse_90SN) = list(levels(mcss$remorse), levels(mcss$remorse))
#We should always check that we got the misclassification matrix that we wanted.
mc.remorse_90SN

## 0 1
## 0 1 0.1
## 1 0 0.9

Now we are ready to run the MC-SIMEX adjustment. The only difference with the standard SIMEX
adjustments that we have already undertaken is that we now use the command mcsimex instead of simex,
and the option mc.matrix instead of measurement.error.
adj_rem90SN = mcsimex(naive, mc.matrix = mc.remorse_90SN, SIMEXvariable = "remorse",

jackknife.estimation = FALSE)
summary(adj_rem90SN)

## Call:
## mcsimex(model = naive, SIMEXvariable = "remorse", mc.matrix = mc.remorse_90SN,
## jackknife.estimation = FALSE)
##
## Naive model:
## glm(formula = custody ~ ., family = binomial, data = mcss, x = T)
##
## Simex variable : remorse
## Misclassification matrix:
## 0 1
## 0 1 0.1
## 1 0 0.9
##
## Number of iterations: 100
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##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.76 -0.30 -0.16 0.00 0.31 0.99
##
## Coefficients:
##
## Asymptotic variance:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.321 0.315 -10.56 < 2e-16 ***
## injury 1.991 0.470 4.24 2.3e-05 ***
## prev_cons 2.257 0.309 7.29 4.2e-13 ***
## on_bail 1.640 0.128 12.81 < 2e-16 ***
## mental_disorder -1.465 0.355 -4.13 3.7e-05 ***
## remorse1 -0.757 0.176 -4.31 1.7e-05 ***
## male 0.220 0.120 1.83 0.067 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(adj_rem90SN , mfrow= c(2,4))
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We can see that the effect of remorse is only marginally attenuated when contemplating a 90% specificity
in that variable. Furthermore, we can see that there is not a clear SIMEX function, which suggests the
adjustment isunreliable. It is possible that you got a rather different adjustment than the one shown here
because of that unreliability and the uncertainty inherent to the simulation process. Can you now run another
adjustment on your own for the case of a 80% sensitivity in remorse?
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################# REMOVE THIS FROM THE HANDOUT #################
#The misclassification matrix for a 80% sensitivity.
mc.remorse_80SN = matrix(c(1,0,0.20,0.80),nrow=2)
dimnames(mc.remorse_80SN) = list(levels(mcss$remorse), levels(mcss$remorse))
mc.remorse_80SN

## 0 1
## 0 1 0.2
## 1 0 0.8
adj_rem80SN = mcsimex(naive, mc.matrix = mc.remorse_80SN, SIMEXvariable = "remorse",

jackknife.estimation = FALSE)
summary(adj_rem80SN )
plot(adj_rem80SN , mfrow= c(2,4))
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Again, the adjustment is not too reliable, and in any case it only points at a marginal attenuation bias in
the effect of remorse on custody. Hence, we can conclude that the effect we have attributed to remorse on
the probability of receiving a custodial sentence is robust to a potential problem of false negatives in the
recording of remorse.

####################### UP TO HERE #######################

Let’s now proceed by assuming that the variable male is also misclassified. This is a hypothetical problem.
As far as I am aware this variable is accurately recorded in the MCSS. However, when that information is
not available, researchers have sought to derive demographic characteristics like gender or ethnicity using
subject’s names (see for example Pina-Sánchez et al., 2019). We could expect such measures to be prone to
some degree of misclassification. For example, Alex, Jordan, Jamie, are names commonly used for men and
women in the UK.
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If the above rationale seems plausible, we could explore the impact of both male and remorse being misclassified.
For example, we could consider the impact of a 90% specificity and sensitivity in male, while keeping the
previously considered 90% sensitivity for remorse. However, before we can conduct the adjustment we need
to turn male into a factor and re-estimate our naive model.
mcss$male = as.factor(mcss$male)
naive = glm(custody ~ ., x=T, family= binomial, data=mcss)
summary(naive)

##
## Call:
## glm(formula = custody ~ ., family = binomial, data = mcss, x = T)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.340 0.311 -10.75 < 2e-16 ***
## injury 1.992 0.517 3.85 0.00012 ***
## prev_cons 2.265 0.303 7.49 7.0e-14 ***
## on_bail 1.644 0.129 12.75 < 2e-16 ***
## mental_disorder -1.464 0.336 -4.35 1.3e-05 ***
## remorse1 -0.777 0.175 -4.44 9.0e-06 ***
## male1 0.223 0.123 1.81 0.06983 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2552.5 on 2115 degrees of freedom
## Residual deviance: 2137.6 on 2109 degrees of freedom
## AIC: 2152
##
## Number of Fisher Scoring iterations: 6

We can then specify our new misclassification matrix for male.
#The misclassification matrix for a 90% sensitivity and 90% specificity in male.
mc.male_90SN90SP = matrix(c(0.90,0.10,0.10,0.90),nrow=2)
dimnames(mc.male_90SN90SP) = list(levels(mcss$male), levels(mcss$male))
mc.male_90SN90SP

## 0 1
## 0 0.9 0.1
## 1 0.1 0.9

At this point we can undertake the adjustment considering two misclassified variables.
adj = mcsimex(naive, mc.matrix = list(remorse = mc.remorse_90SN,

male = mc.male_90SN90SP), SIMEXvariable = c("remorse","male"),
jackknife.estimation = FALSE)

summary(adj)

## Call:
## mcsimex(model = naive, SIMEXvariable = c("remorse", "male"),
## mc.matrix = list(remorse = mc.remorse_90SN, male = mc.male_90SN90SP),
## jackknife.estimation = FALSE)
##
## Naive model:
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## glm(formula = custody ~ ., family = binomial, data = mcss, x = T)
##
## Simex variable : remorse male
## Misclassification matrix:
## 0 1
## 0 1 0.1
## 1 0 0.9
## 0 1
## 0 0.9 0.1
## 1 0.1 0.9
##
## Number of iterations: 100
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.76 -0.30 -0.15 0.00 0.31 0.99
##
## Coefficients:
##
## Asymptotic variance:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.355 0.326 -10.30 < 2e-16 ***
## injury 2.006 0.478 4.20 2.8e-05 ***
## prev_cons 2.248 0.310 7.26 5.3e-13 ***
## on_bail 1.631 0.129 12.69 < 2e-16 ***
## mental_disorder -1.455 0.354 -4.11 4.2e-05 ***
## remorse1 -0.786 0.176 -4.46 8.8e-06 ***
## male1 0.266 0.167 1.59 0.11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(adj, mfrow= c(2,4))
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While the estimated effect of remorse remains unaffected, we now observe that even a minor degree of
misclassification in male can introduce a substantial attenuation bias in its estimated effect. Nevertheless, it
is important to note that, in the results obtained here, the adjusted male effect does not reach statistical
significance. However, because of the uncertainty associated with the simulation process you might have
found that male became significant in your adjustment, which would be pointing at unwarranted disparities
in sentencing. If you want to be more certain about this result you can increase the number of lambda points,
as we did in Exercise 1A.

Exercise 2B. Misclassification in the dust exposure study.
In this last exercise you are asked to go back to the bronchitis study to contemplate the impact of potentially
misclassified variables. Lederer and Kuchenhoff (2006) refer to studies in the literature suggesting that about
8% of smokers self-report them as non-smokers. Would you be able to adjust for this type of misclassification
using the naive model that we estimated in Exercise 1B and the mcsimex adjustments we have learnt in
Exercise 2B? Can you conclude that the association between dust concentration and development of chronic
bronchitis is robust to such a problem of misclassification in self-reported smoking?

Next, we can consider that the outcome variable cbr is also subject to misclassification, as it is often the
case when diagnosing any kind of complex disease. If you had access to a validation subsample (e.g. a more
thorough medical examination undertaken for 10% of the participants in the sample), which informs your
that the sensitivity and specificity rates for diagnostics of chronic bronchitis based on the methods used in
the bronchitis study are 0.90 and 0.80 respectively, would you be able to assess the robustness of the effect of
dust concentration in the presence of misclassified cbr and smoking simultaneously?

If possible see if you can express the biases you detect in terms of relative bias so you can report their impact
more clearly.
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#Importing the data
load(file='bronch.rda')
summary(bronch)
#I set cbr as a factor so it can be adjusted using mcsimex
bronch$cbr = as.factor(bronch$cbr)
#The naive model
naive = glm(cbr ~ dust + smoking + expo, x=T, family= binomial, data=bronch)

################# REMOVE THIS FROM THE HANDOUT #################
#I find it useful to start by drawing the general 2x2 misclassfication matrix.
#So I can match the right probability in each cell more clearly.
matrix_data = matrix(c("Specificity", "False positive", "False negative",

"Sensitivity"), nrow = 2)
colnames(matrix_data) = c("X=0", "X=1")
rownames(matrix_data) = c("X*=0", "X*=1")
matrix_data

## X=0 X=1
## X*=0 "Specificity" "False negative"
## X*=1 "False positive" "Sensitivity"
#Then check that my misclassification matrix is ordered correctly.
mc.s = matrix(c(1,0,0.08,0.92),nrow=2)
dimnames(mc.s) = list(levels(bronch$smoking), levels(bronch$smoking))
mc.s

## 0 1
## 0 1 0.08
## 1 0 0.92
#The mcsimex adjustment with misclassification in smoking.
adj_smoking92 = mcsimex(naive, mc.matrix = mc.s, SIMEXvariable = "smoking")
#summary(mod.smoking)
plot(adj_smoking92, mfrow= c(2,2))
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The effect of smoking appears to be severely attenuated, but the effect of dust remains practically unchanged.
Hence, the association of interest is robust to false negatives in smoking behaviour. Good news.
#Expressing the impact of measurement error in terms of relative bias.
Bias = naive$coefficients - adj_smoking92$coefficients
RBias = Bias / adj_smoking92$coefficients
RBias

## (Intercept) dust smoking1 expo
## -0.0664 -0.0086 -0.2401 -0.0070
#The effect of smoking is attenuated by 22%.

If we also want to contemplate misclassification in the outcome first we need to specify its misclassification
matrix.
mc.cbr = matrix(c(0.8,0.2,0.1,0.9), nrow=2)
dimnames(mc.cbr) = list(levels(bronch$cbr), levels(bronch$cbr))
mc.cbr

## 0 1
## 0 0.8 0.1
## 1 0.2 0.9
adj_smoking90cbr9080 = mcsimex(naive, mc.matrix = list(smoking = mc.s, cbr = mc.cbr),

SIMEXvariable = c("cbr", "smoking"))
#summary(mod.smoking)
plot(adj_smoking90cbr9080, mfrow= c(2,2))
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#Expressing the impact of measurement error in terms of relative bias.
Bias = naive$coefficients - adj_smoking90cbr9080$coefficients
RBias = Bias / adj_smoking90cbr9080$coefficients
RBias

## (Intercept) dust smoking1 expo
## -0.45 -0.41 -0.51 -0.43

This provides a far more worrying picture. If cbr is not correctly recorded, we could be considering a strong
attenuation bias in its relationship with dust. Namely, more than a 40% attenuation when cbr is recorded
with 90% sensitivity and 80% specifcity.

####################### UP TO HERE #######################

Concluding remarks
We have seen how SIMEX is another highly flexible adjustment method that could be employed to adjust for
a wide range of measurement error and misclassification problems across different outcome models. Crucially,
SIMEX allows us to consider random errors, which is something that we could not simply simulate and use it
to adjust the error-prone variable directly. However, SIMEX is not without its limitations.

In terms of applicability, and as far as I am aware, the simex package cannot be used to adjust for models
including variables affected by both measurement error and misclassification. This is a clear limitation, as we
have just seen for the case of the bronchitis study. In Exercise 1A we also encountered another limitation in
the form of outcome models that could be adjusted. There we used a linear model but given the right-skewed
distribution a model for count or duration data might have been more appropriate.

There are R packages that have been created to address these gaps. See for example augSIMEX (Zhang &
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Yi, 2022) to adjust for measurement error and misclassification simultaneously, or simexaft (Xiong & He,
2022) to adjust for measurement error in the outcome variable of survival models. However, if what you
want is complete flexibility in the modelling of your outcome variable and/or the measurement error and
misclassification mechanisms present in your data, the best option is to use Bayesian statistics. Let’s move
on to the next practical, where we are going to demonstrate the potential of Bayesian adjustments.
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