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Introduction
This is the first practical exercise from day 2 of the short course ‘Adjustment Methods for Data Quality
Problems: Missing Data, Measurement Error, and Misclassification.’ You can download the associated lecture
slides and data here: https://github.com/jmpinasanchez/measurement

In this workshop we are going to see how we can adjust for systematic and differential forms of measurement
error using simulations. This is the least sophisticated way of adjusting for measurement error, but as we will
see it is quite flexible in that it can be used to represent a wide range of measurement error processes. This
approach involves modifying the error-prone variable in order to strip away the measurement error process at
play, so we can retrieve the values of the unobserved true variable.

We will practice how to do this through a series of examples exploring some of the forms of measurement error
present in police recorded crime data (Pina-Sánchez et al., 2023a). As shown in Figure 1, police recorded
crime is bound to systematically underrepresent the true extent of crime since not all crime is reported to - or
detected by - the police. We will see how these systematic errors can be easily approximated and accounted
for in our adjustments using estimates from crime surveys. We will then proceed to explore more complex
differential errors, which could take place when the key variable of interest in our analysis (i.e. the variable
explored as either a cause or effect of crime) is also affecting police recording.

Figure 1: The dark figure of crime

To practice the adjustment for systematic and differential errors we will use criminal damage rates (per 1000
residents) recorded in 2011, across Middle layer Super Output Areas (MSOAs) in Greater London (N = 982).
These crime rates are derived from data.police.uk and the 2011 Census. Using further data from the Census
and from the Metropolitan Police Service Public Attitudes Survey 2011–2013, we will explore the robustness
of the effect ethnic homogeneity and collective efficacy on crime. We will assess the robustness of ethnic
homogeneity together, step by step, then you will be asked to repeat that process on your own for the case of
unemployment. We will also see how these types of adjustments for non-random errors such as those seen
in police data can be facilitated using the rcme package (Pina-Sánchez, 2023b). We conclude the practical
demonstrating the key limitation of adjustments based on simulations of measurement error mechanisms,
namely, that we cannot retrieve the true value of variables subject to random errors.
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Exercise 1. Adjusting for systematic errors in police data
Let’s start by importing the data, and taking a quick look at it.
#Importing the data.
data = read.csv("crime_London.csv")
#Remember to use the address of the folder where you saved the dataset.
head(data)

## crime age collective unemployment white
## 1 3.83 -0.27 -0.627 1.56 0.233
## 2 2.38 0.20 -0.764 0.61 -0.304
## 3 0.49 0.91 1.124 0.68 1.058
## 4 2.56 -0.27 -0.157 0.82 0.300
## 5 4.40 -0.51 -0.043 1.49 0.083
## 6 3.17 -0.74 -1.758 2.02 0.346
summary(data)

## crime age collective unemployment white
## Min. : 0.4 Min. :-2.4 Min. :-4.3 Min. :-1.7 Min. :-2.81
## 1st Qu.: 1.8 1st Qu.:-0.7 1st Qu.:-0.7 1st Qu.:-0.8 1st Qu.:-0.74
## Median : 2.5 Median :-0.3 Median : 0.0 Median :-0.1 Median : 0.11
## Mean : 2.7 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.00
## 3rd Qu.: 3.3 3rd Qu.: 0.7 3rd Qu.: 0.8 3rd Qu.: 0.7 3rd Qu.: 0.81
## Max. :15.6 Max. : 3.3 Max. : 2.9 Max. : 3.5 Max. : 1.84
hist(data$crime)
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We can see that all the variables are continuous. Criminal damage rates are approximately normally
distributed, although we have a couple of outliers slightly skewing the distribution right. All the other
variables are standardised (they have been transformed so they have a mean of 0 and standard deviation
equal to 1) so we can compare their relative effect size more easily.

To be precise, before being standardised unemployment captured the unemployment rate across MSOAs,
white represents the percentage of residents who are of white ethnicity, age captures the median age, and
collective is the area weighted average of individual scores of collective efficacy, which was estimated using
confirmatory factor analysis based on five items derived from the Metropolitan Police Service Public Attitudes
Survey: ‘people in this area can be trusted’, ‘people act with courtesy to each other’, ‘people take pride in
their environment’, ‘if any young people here are causing trouble, people will tell them off’, ‘people call the
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police if someone is acting suspiciously’ and ‘if I sensed trouble, I could get help from people who live here’.

In this first exercise we will just seek to approximate the conditional effect attributed to white, collective,
unemployment, and age on criminal damage. To do so we estimate a linear model with crime as the outcome
variable and all the other variables in our dataset introduced as explanatory variables.
#Modelling damage
naive = lm(crime ~ collective + unemployment + white + age, data=data)
summary(naive)

##
## Call:
## lm(formula = crime ~ collective + unemployment + white + age,
## data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.718 -0.735 -0.196 0.521 13.334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7055 0.0400 67.64 < 2e-16 ***
## collective -0.2622 0.0536 -4.89 1.2e-06 ***
## unemployment 0.3251 0.0614 5.30 1.4e-07 ***
## white 0.2934 0.0577 5.09 4.3e-07 ***
## age -0.2612 0.0571 -4.58 5.3e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.2 on 977 degrees of freedom
## Multiple R-squared: 0.17, Adjusted R-squared: 0.166
## F-statistic: 49.9 on 4 and 977 DF, p-value: <2e-16

We find that all explanatory variables are statistically significant, and most of them point in the expected
direction. Areas with older residents, and higher levels of collective efficacy see less crime, while unemployment
has the expected criminogenic effect. The only unexpected effect is that of white. We also see that the relative
effect size is rather similar across all explanatory variables, which seem to be only weakly associated with
crime. For example, areas where the median age is one standard deviation over the London average, ony see
0.26 less criminal damage incidents per 1000 residents and year.

However, we know that police data is heavily flawed. To calibrate our crime variable we can use estimates
derived from the Crime Survey for England and Wales (CSEW). Specifically, since the CSEW asks participants
whether they have experienced different types of crimes, and whether they reported them to the police,
we can estimate the national recording rates for different crimes. For the case of criminal damage we find
that recording rates varied from 25% in 2011/12 to 45% in 2018/19 (Pina-Sánchez et al., 2023b). That is,
depending on the year, we might see up to three quarters of criminal damage incidents are missing from
police statistics.

We can use the recording rate seen in 2011 (the year where most our data comes from) to adjust our crime
variable and re-estimate our model. To do so we need to keep in mind the functional form of the expected
measurement error mechanism at play. In our case, we saw that it makes sense to think of the measurement
error present in police data as multiplicative, Y ∗ = Y · U . Hence, if we take U = 0.25 then we can rearrange
the measurement model and estimate the true level of crime as follows: Y = Y ∗/U .
#Adjusting criminal damage according to the estimated under-recording rate.
data$adj1_crime = data$crime / 0.25
#Re-estimating our model using adjusted criminal damage rates.
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adj1 = lm(adj1_crime ~ collective + unemployment + white + age, data=data)
adj1

##
## Call:
## lm(formula = adj1_crime ~ collective + unemployment + white +
## age, data = data)
##
## Coefficients:
## (Intercept) collective unemployment white age
## 10.82 -1.05 1.30 1.17 -1.04
#To facilitate comparisons we can put estimates from the naive and adjusted
#models together in a a table.
results = cbind(naive$coefficients, adj1$coefficients)
colnames(results) = c("naive","adj1")
results

## naive adj1
## (Intercept) 2.71 10.8
## collective -0.26 -1.0
## unemployment 0.33 1.3
## white 0.29 1.2
## age -0.26 -1.0

We can now see that the effect of adjusting for the under-recording of criminal damage is to increase the
effect size of each of the regression coefficients (including the intercept) proportionally. This helps us see that
the actual crime reduction effect associated to age or collective is much stronger than previously noted.

Now, we do not know for sure that 25% is the true under-recording rate. In fact, the police often detects
crimes that are not reported to them, so it is likely that the actual rate is higher than that. So, rather than
providing a single adjusted estimate, it would be better if we could report the findings that we obtain after
considering a range of recording rates. For example, we could repeat our adjustment considering recording
rates ranging from 0.25 to 0.45.

To do so we can repeat the same code that we used above and report findings one by one, or we can automatise
that process using a loop. Below we can see how to build such a loop to retrieve the effect of unemployment
on crime for different recording rates.
#Specifying the range of recording rates to be considered.
recording = c(0.25, 0.30, 0.35, 0.40, 0.45)
#Create an empty vector to store the regression coefficients for unemployment.
beta_unemployment = numeric(length(recording))
#Loop over the range of recording rates.
for (i in seq_along(recording)) {

#Adjusting crime rates.
data$adj_crime = data$crime / recording[i]
#Re-estimating the outcome model using adjusted criminal damage rates.
adj_model = lm(adj_crime ~ collective + unemployment + white + age, data=data)
#Saving the effect of unemployment.
beta_unemployment[i] = coef(adj_model)[3]

}
#Printing the effect of unemployment for different recording rates.
adj_results = data.frame(recording = recording, unemployment = beta_unemployment)
print(adj_results)

## recording unemployment
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## 1 0.25 1.30
## 2 0.30 1.08
## 3 0.35 0.93
## 4 0.40 0.81
## 5 0.45 0.72

We can take these results to convey that areas where unemployment is one standard deviation above the
London average tend to see 0.7 to 1.3 higher criminal damage incidents per 10000 residents and year, depending
on the specific recording rate, and after controlling for median age, ethnic homogeneity, and neighborhood
collective efficacy.

Exercise 2a. Adjusting for differential errors in ethnic homogeneity
Let’s now explore in more detail the positive effect of ethnic homogeneity on criminal damage, which we
found counter-intuitive since we would expect areas where more white residents live to be wealthier and
therefore less prone to crime. According to our naive model, areas where the proportion of white residents is
one standard deviation over the London average see an additional 0.29 criminal damage incidents per 1000
residents and year. The effect was even stronger (1.17) after adjusting for an overall recording rate of just
25%.

This adjustment improves the robustness of our analysis. However, notice that we are assuming a uniform
recording rate across London. That is a questionable assumption, as it is well documented that trust in the
police is lower amongst ethnic minority groups (Tyler, 2005). The specific literature exploring crime reporting
across ethnic groups is not settled though. Buil-Gil et al. (2021), after estimating the dark figure of crime
using the CSEW, shows that the average reporting for different ethnic groups changes significantly year by
year. The starkest difference was measured in 2014/15 with seven percentage points between white and black
participants, in favour of the former.

To be certain that the positive association between white and crime is robust we should contemplate different
scenarios where we allow for recording rates to differ across ethnic groups. The key here is to generate
scenarios that are more plausible than accepting a uniform recording rate across ethnic groups. The simplest
way to undertake such assessments is by considering different levels of association between white and the
error term (U) representing the recording rate. I suggest starting with a weak association in the expected
direction (recording rates are higher in neighborhoods with more white residents), which can be formulated
using a linear model. We can take the base rate of a 25% recording rate to represent the intercept, and 0.01
as the slope for white.
#Simulating differential errors.
data$U2 = 0.25 + 0.01*data$white
#Adjusting crime rates according to our selection of differential errors.
data$adj2_crime = data$crime / data$U2
#Notice how the systematic error is not uniform anymore.
hist(data$U2)
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Histogram of data$U2

data$U2

F
re

qu
en

cy

0.22 0.23 0.24 0.25 0.26 0.27

0
10

0

#Recording rates are proportional to the proportion of white residents.
plot(data$white, data$U2)
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To gain an intuition about whether the recording rates are distinct enough across the distribution of white we
can examine two key milestones, such as the first and fourth quintiles.
#The criminal damage recording rate in the top quintile of white.
data$U2[data$white == quantile(data$white, 0.80)]

## [1] 0.26 0.26 0.26 0.26 0.26
#The criminal damage recording rate in the lowest quintile of white.
data$U2[data$white == quantile(data$white, 0.20)]

## [1] 0.24 0.24 0.24

That is, the differential error that we have simulated for the recording rates of criminal damage differs in
roughly two percentage points from the lowest to the highest quintile of most ethnically homogeneous areas.
If we expected a stronger association we could consider replicating the simulation with a larger value for the
effect of white on U . For example, we could consider slopes of 0.015 and 0.02.
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#Simulating differential errors for a white slope of 0.015
data$U3 = 0.25 + 0.015*data$white
#Adjusting crime rates according to our selection of differential errors.
data$adj3_crime = data$crime / data$U3
#The criminal damage recording rate in the top quintile of white.
data$U3[data$white == quantile(data$white, 0.80)]

## [1] 0.26 0.26 0.26 0.26 0.26
#The recording rate in the lowest quintile.
data$U3[data$white == quantile(data$white, 0.20)]

## [1] 0.24 0.24 0.24

For a slope of white equal to 0.015, we have a difference in recording rates across the lowest and top quintile
of roughly three percentage points.
#Simulating differential errors for a white slope of 0.02
data$U4 = 0.25 + 0.02*data$white
#Adjusting crime rates according to our selection of differential errors.
data$adj4_crime = data$crime / data$U4
#The criminal damage recording rate in the top quintile of white.
data$U4[data$white == quantile(data$white, 0.80)]

## [1] 0.27 0.27 0.27 0.27 0.27
#The recording rate in the lowest quintile.
data$U4[data$white == quantile(data$white, 0.20)]

## [1] 0.23 0.23 0.23

For a slope of 0.02 we have a difference of roughly four percentage points. All these scenarios seem plausible,
so let’s see what impact they can have on our findings. Specifically, let’s check if the positive association
between white and crime remains after we take into consideration the additional sets of differential errors we
have simulated.
#Estimating the adjusted models for each of the sets of differential errors.
adj2 = lm(adj2_crime ~ collective + unemployment + white + age, data=data)
adj3 = lm(adj3_crime ~ collective + unemployment + white + age, data=data)
adj4 = lm(adj4_crime ~ collective + unemployment + white + age, data=data)
#Combining the results for all the adjustments we have considered.
results = cbind(rbind(summary(naive)$coefficients[4,1], summary(naive)$coefficients[4,4]),

rbind(summary(adj1)$coefficients[4,1], summary(adj1)$coefficients[4,4]),
rbind(summary(adj2)$coefficients[4,1], summary(adj2)$coefficients[4,4]),
rbind(summary(adj3)$coefficients[4,1], summary(adj3)$coefficients[4,4]),
rbind(summary(adj4)$coefficients[4,1], summary(adj4)$coefficients[4,4]))

results_df = as.data.frame(results) #Convert the results to a data frame.
# Apply formatting to control decimal places.
results_df = format(round(results_df, digits = 3), nsmall = 3)
# Assign column and row names
colnames(results_df) = c("naive", "adj1", "adj2", "adj3", "adj4")
rownames(results_df) = c("coefficient", "p-value")
results_df

## naive adj1 adj2 adj3 adj4
## coefficient 0.293 1.174 0.757 0.536 0.304
## p-value 0.000 0.000 0.001 0.020 0.188

This means that, if we take into account the plausible scenario whereby crime recording is lower in areas with
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a higher concentration of ethnic minority residents, then we can see how the positive association between white
and crime is lower than we had previously anticipated. In fact, if we see differences in reporting of roughly
four percentage points across the highest and lowest quintiles of ethnically homogeneous neighbourhoods,
then the association between white and crime becomes non-significant. Hence, we cannot robustly claim that
ethnic homogeneity leads to more crime since this could be the spurious result of white residents showing a
higher propensity to reporting crime to the police than ethnic minority residents.

Exercise 2b. Adjusting for differential errors in unemployment
In this exercise you are asked to carry out a similar sensitivity analysis to explore the robustness of the
criminogenic effect of unemployment. Buil-Gil et al. (2021) indicates that crime reporting rates are slightly
lower amongst the unemployed. On average, across the window of observation considered by the authors, this
difference does not amount to more than a one percentage point of difference, but it could get up to five
percentage points depending on the year.

To undertake this sensitivity analysis decide first on a value for the average recording rate for criminal damage.
Then, simulate a range of sets of differential errors that you think could be plausible. Use these simulated
errors to adjust the police recorded crime rates in our dataset. Lastly, re-estimate our naive model using
different sets of adjusted crime rates. Is the previously noted positive association between unemployment and
crime robust to the expected differential errors? And do you find grounds to suspect that this relationship
might have been over or underestimated in the past?

################# REMOVE THIS FROM THE HANDOUT #################

We can take a look first at the effect of a constant recording rate of 25%. To do so we can simply retrieve the
analysis we undertook in the first exercise.
results = cbind(naive$coefficients[3], adj1$coefficients[3])
colnames(results) = c("naive","adj1")
results

## naive adj1
## unemployment 0.33 1.3

As we noted, the result of taking into account a recording rate of 25% is that the effect size of unemployment
in terms of crime reduction is four times stronger. Let’s now assess the impact after considering differential
errors.
#Simulating differential errors for a slope of unemployment equal to -0.01
data$U5 = 0.25 - 0.01*data$unemployment
#Adjusting crime rates according to our selection of differential errors.
data$adj5_crime = data$crime / data$U5
#The criminal damage recording rate in the top quintile of unemployment.
data$U5[data$unemployment == quantile(data$unemployment, 0.80)]

## [1] 0.24 0.24 0.24 0.24 0.24 0.24
#The recording rate in the lowest quintile of unemployment.
data$U5[data$unemployment == quantile(data$unemployment, 0.20)]

## [1] 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

For a slope of -0.01 we see a difference in recording rates across the top and bottom quintile of approximately
two percentage points. This is very similar to what we observed for the case of white. That is the case
because both variables are standardised. Let’s then move on to simulate differential errors with a slope of
-0.15 and -0.20.
#Simulating differential errors for a slope of unemployment equal to -0.015.
data$U6 = 0.25 - 0.015*data$unemployment
#Adjusting crime rates according to our selection of differential errors.
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data$adj6_crime = data$crime / data$U6
#The criminal damage recording rate in the top quintile of unemployment.
data$U6[data$unemployment == quantile(data$unemployment, 0.80)]

## [1] 0.24 0.24 0.24 0.24 0.24 0.24
#The recording rate in the lowest quintile of unemployment.
data$U6[data$unemployment == quantile(data$unemployment, 0.20)]

## [1] 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
#Simulating differential errors for a slope of unemployment equal to -0.02.
data$U7 = 0.25 - 0.02*data$unemployment
#Adjusting crime rates according to our selection of differential errors.
data$adj7_crime = data$crime / data$U7
#The criminal damage recording rate in the top quintile of unemployment.
data$U7[data$unemployment == quantile(data$unemployment, 0.80)]

## [1] 0.23 0.23 0.23 0.23 0.23 0.23
#The recording rate in the lowest quintile of unemployment.
data$U7[data$unemployment == quantile(data$unemployment, 0.20)]

## [1] 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

We can now re-estimate the outcome model using the different sets of adjusted crime rates.
#Estimating the adjusted models for each of the sets of differential errors.
adj5 = lm(adj5_crime ~ collective + unemployment + white + age, data=data)
adj6 = lm(adj6_crime ~ collective + unemployment + white + age, data=data)
adj7 = lm(adj7_crime ~ collective + unemployment + white + age, data=data)
#Combining the results for all the adjustments we have considered.
results = cbind(rbind(summary(naive)$coefficients[3,1], summary(naive)$coefficients[3,4]),

rbind(summary(adj1)$coefficients[3,1], summary(adj1)$coefficients[3,4]),
rbind(summary(adj5)$coefficients[3,1], summary(adj5)$coefficients[3,4]),
rbind(summary(adj6)$coefficients[3,1], summary(adj6)$coefficients[3,4]),
rbind(summary(adj7)$coefficients[3,1], summary(adj7)$coefficients[3,4]))

results_df = as.data.frame(results) #Convert the results to a data frame.
#Apply formatting to control decimal places.
results_df = format(round(results_df, digits = 3), nsmall = 3)
#Assign column and row names.
colnames(results_df) = c("naive", "adj1", "adj5", "adj6", "adj7")
rownames(results_df) = c("coefficient", "p-value")
results_df

## naive adj1 adj5 adj6 adj7
## coefficient 0.325 1.300 1.818 2.101 2.405
## p-value 0.000 0.000 0.000 0.000 0.000

It seems that the criminogenic effect of unemployment is not only robust, but it appears to be vastly
underestimated if we do not consider that crime is less likely reported to the police in areas with higher
unemployment.

####################### UP TO HERE #######################

Exercise 2c. Adjusting for differential errors in collective efficacy using RCME
The approach we have followed to simulate differential errors in recording rates provide a good enough
approximation. However, we can encounter important limitations when we consider crime types with very low
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or very high reporting rates. For example, cases of rape tend to be reported to the police in less than 10% of
instances, whereas car theft tends be reported in more than 90% of cases (Pina-Sánchez et al., 2023a). In
those instances, assuming a linear model to simulate differential errors could easily create recording rates that
are lower than zero or higher than one, which represent non-sensical values. To reflect such floor and ceiling
effects we recommend using a logit model for the simulation of differential recording rates. We (Pina-Sánchez
et al., 2023b) have created an R package, rcme, which incorporates such transformation so we can obtain
differential recording rates using either odds ratios or risk ratios, which should have the added value of
facilitating the interpretation of how plausible those differential errors are.

In this exercise we are going to practice using rcme to explore the robustness of the crime reduction effect
attributed to collective. Collective efficacy is a widely studied concept in Criminology, understood as the
combination of ties between local residents with a willingness to intervene to prevent crimes (Mazerolle et
al., 2010; Sampson et al., 1997). The literature is clear in that low levels of collective efficacy are seen as a
key precursor of crime. However, there are theoretical grounds to expect that crime reporting is positively
associated with collective efficacy, since social trust and willingness to collaborate with the police are specific
items used in the measurement of collective efficacy. This intuition has been empirically corroborated in the
literature. For example, at the individual level, Hart and Colavito (2011) reported a positive association
between collective efficacy and crime reporting amongst US college students, while in England and Wales,
Brunton-Smith et al. (2022) report a similar positive association between collective efficacy and crime recording
at the Community Safety Partnership level.

To be able to use rcme you need to install it first, to do so you also need to install the devtools package if
you do not have it already. You can install both of those packages with the two lines of code commented
out below. If you are asedk to press enter to continue the installation, then do so. Once the packages are
installed we can call the rcme library.
#install.packages("devtools")
#devtools::install_github("RecountingCrime/rcme")
library(rcme)

To undertake this sensitivity analysis, where crime is considered the outcome variable, we will use the
rcme_out command (when crime is introduced as an explanatory variable you should use rcme_ind). To
use rcme_out we need to provide the following information: i) the type of outcome model we are exploring,
formula; ii) the data we are using; iii) the focal_variable, i.e. the variable which effect on crime we are
investigating; iv) the expected average recording rate, R, or a range of plausible recording rates; and optionally,
v) the type of differential errors, D, expressed as an odds ratio or as a range of them; and vi) whether crime
has been log-transformed, log_var.

For our case we will consider recording rates ranging from 25% to 45% and differential errors ranging from an
odds ratio of 0.95 (i.e. areas with a one standard deviation of collective one standard deviation higher than
the London average show 5% lower odds of recording crime) to an odds ratio of 1.10 (i.e. areas with a one
standard deviation of collective one standard deviation higher than the London average show 10% higher
odds of recording crime). We can pass that information to the rcme_out command as shown below. This will
then: i) simulate the different errors for our combination of average recording rates, and differential errors; ii)
adjust crime accordingly (assuming a multiplicative measurement error model); iii) re-estimate the outcome
model for each of the adjusted crime rates created; and iv) report the effect of collective under each of the
scenarios considered.
robust_collective = rcme_out(

formula = "crime ~ collective + unemployment + white + age",
data = data,
focal_variable = "collective",
R = c(0.25, 0.35, 0.45),
D = c(0.95, 1, 1.05, 1.10))

robust_collective

## $sim_result
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## R D log_var rr focal_variable SE
## 1 0.25 0.95 FALSE 0.96 -0.61 0.21
## 2 0.35 0.95 FALSE 0.97 -0.47 0.15
## 3 0.45 0.95 FALSE 0.97 -0.40 0.12
## 4 0.25 1.00 FALSE 1.00 -1.05 0.21
## 5 0.35 1.00 FALSE 1.00 -0.75 0.15
## 6 0.45 1.00 FALSE 1.00 -0.58 0.12
## 7 0.25 1.05 FALSE 1.04 -1.49 0.22
## 8 0.35 1.05 FALSE 1.03 -1.02 0.15
## 9 0.45 1.05 FALSE 1.03 -0.76 0.12
## 10 0.25 1.10 FALSE 1.07 -1.93 0.22
## 11 0.35 1.10 FALSE 1.06 -1.29 0.15
## 12 0.45 1.10 FALSE 1.05 -0.94 0.12
##
## $naive
##
## Call:
## lm(formula = paste0(outcome, " ~ ", paste0(predictors, collapse = " + ")),
## data = data)
##
## Coefficients:
## (Intercept) collective unemployment white age
## 2.706 -0.262 0.325 0.293 -0.261
##
##
## $focal_variable
## [1] "collective"

We can retrieve the estimated regression coefficient for collective (under focal_variable) and its associated
standard error (SE), for each of the combinations of average recording rates and differential errors. In addition,
to facilitate interpreting the plausibility of the differential errors invoked, we are also given the equivalent
association in terms of risk ratios (rr). Risk ratios represent the ratio of probabilities, which is more intuitive
than the ratio of odds. For example, we can interpret the last of the scenarios reported above as the average
recording rate for criminal damage assumed to be 45%, but this is 5% higher (47%) in areas where collective
is one standard deviation above the average.

Ultimately, when we are considering a range of parameters for the average recording rate and potential
differential errors, their impact can be interpreted best visually, which we can generate using rme_sim_plot.
Below we do so while requesting to include the 95% confidence intervals (ci), the point estimate for the
effect of collective on crime under the naive model (i.e. ignoring measurement error), and differential errors
expressed as risk ratios (rr).
rcme_sim_plot(robust_collective, ci = T, naive = T, rr = T)
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We can see how the crime reduction effect of collective is severely under-estimated, with the magnitude of
that bias being proportional to the extent of under-recording and the differential errors. In fact, even if we
consider a 0.95 risk ratio as our value of differential errors, that is, even if we consider that recording rates
are lower in areas where collective efficacy is higher (an assumption that contradicts the available literature),
we can still see that the effect of collective remains underestimated.

We can therefore use rcme to facilitate the sensitivity analysis of regression models that include police recorded
crime data as either their outcome or as an explanatory variable, considering any range of recording rates
and differential errors. This is a highly flexible approach, we have illustrated how it works for the case of a
linear outcome model, but it can also be used for any other type of regression model (changing the formula
option in rcme_out). In addition, even though rcme was built with the goal of facilitate measurement error
adjustments in police data, it could also be used for the adjustment of any other variable subject to systematic
multiplicative errors, such as retrospective reports of the number or duration of spells of unemployment
(Pina-Sánchez et al., 2016), personal income (Glewwe, 2007), or recalled dates of lifecourse milestones, like
age at menarche (Pickles et al., 1996).

To learn more about rcme see here, https://github.com/RecountingCrime/rcme.

Exercise 3. Failing to adjust for random errors
In this workshop we have practiced simulating multiplicative systematic errors, such as those that can be
expected from police recorded crime rates. We have also simulated differential errors to reflect varying crime
rates for different values of continuous variables like ethnic homogeneity or collective efficacy. These are
only a couple of examples of the types of measurement errors that could be simulated to undertake similar
sensitivity analyses (see Gallop and Weschle, 2019). There is however a common form of measurement error
that we cannot strip away simply through simulations, that is random measurement error.

Unlike for the case of systematic errors, when we have a variable prone to random errors, we cannot adjust it
directly because we do not know (not even approximately) how each value is affected. So, even if we know,
say, the reliability ratio of the observed variable, which can be used to simulate a similar type of measurement
error process to the one present in that variable, we cannot use that simulated noise to recover the true
variable. Below we demonstrate this limitation empirically.

Let’s simulate two continuous variables X and Y , each following a standard normal distribution, and let’s
assume that the two variables are linearly associated with X having an effect of 0.5 on Y .
#The true data.
X = rnorm(10000, 0, 1)
#Y is caused by X.
Y = 0.5*X + rnorm(10000, 0, 1)
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Let’s now take X to be unobserved, instead we observe X∗, which is affected by classical measurement error,
U .
#Simulating classical errors.
U1 = rnorm(10000, 0, 0.5)
#The observed version of X, affected by classical errors.
Xstar = X+U1
#Notice how the classical errors inflate the variability of X, as expected.
sd(X)

## [1] 1
sd(Xstar)

## [1] 1.1
#We can calculate the reliability ratio or Xstar as follows.
var(X)/var(Xstar) #A reliability ratio of 0.8.

## [1] 0.79

Now that we have the true and the observed versions of X we can assess the impact that classical measurement
error will have on the causal effect of X on Y . In the lecture we saw how for this simple case of simple linear
regression with the explanatory variable affected by random errors we should expect an attenuation effect
inversely proportional to the reliability ratio of the error prone variable.
#The true model.
true = lm(Y~X)
true

##
## Call:
## lm(formula = Y ~ X)
##
## Coefficients:
## (Intercept) X
## -0.0202 0.5279
#The naive model.
naive = lm(Y~Xstar)
naive

##
## Call:
## lm(formula = Y ~ Xstar)
##
## Coefficients:
## (Intercept) Xstar
## -0.0205 0.4177
#We observe roughly the 20% attenuation that we expected.

Crucially, we cannot retrieve the true effect of X on Y by adjusting X∗, even if we know the characteristics
of the measurement error mechanism, namely, random errors with a standard deviation of 0.5. Let’s check
that is the case.
#Simulating a random measurement error process like the one that affects Xstar.
U2 = rnorm(10000, 0, 0.5)
#Adjusting the observed variable accoridng to an additive measurement error model.
Xadj = Xstar - U2
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sd(X) #The sd of the true variable.

## [1] 1
sd(Xstar) #The sd of the observed variable prone to classical errors.

## [1] 1.1
sd(Xadj) #The sd of the adjusted variable.

## [1] 1.2
#Oh dear, we have made it worse.
var(X)/var(Xadj) #The reliability ratio of the observed variable

## [1] 0.67
var(X)/var(Xadj) #Reliability ratio of the adjusted variable.

## [1] 0.67
#Rather than adjusting the measurement error we have created more of it.
adj = lm(Y~Xadj)
#Let's check if we have adjusted the effect of X on Y.
true$coefficients[2]

## X
## 0.53
naive$coefficients[2]

## Xstar
## 0.42
adj$coefficients[2]

## Xadj
## 0.35
#The attenuation effect is even lower than previously.
#In essence we are adding more noise, and making things worse.

This incapacity to adjust for random errors represents the main limitation of the type of simulations-based
adjustments that we have practised here. In the next practical we will see how we can still use simulations to
indirectly adjust for random errors using SIMEX. This involves changing the strategy so we do not not seek
to adjust the observed variable directly, but rather we estimate the impact that measurement error have on
our causal estimate of interest through simulating increasing levels of measurement error, and extrapolate to
find the true estimate, when measurement error is not present.
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