
Workshop 4 - Non-Linear Effects (full answers)

JPS

Introduction
In this workshop we are going to practice the modelling of non-linear relationships between explanatory and
outcome variables. To do so we are going to practice two methods, polynomial regression and LOESS curves.
As usual, we have two exercises, where we will explore the relationship between both experience and age on
salaries, paying special attention to potential non-linear effects.

Exercise 1: In this exercise we are going to work with the sample of academic salaries that we introduced in
the bonus exercise last week; this time to explore the potential non-linear effect of experience (measured as
years since obtaining a phd) on salaries. The specific research question to be addressed could be formulated
as: Do salaries increase with the number of years since the PhD was obtained? Non-linear effects will be
explored using polynomial regression.

Exercise 2: Here we will use the Labour Force Survey (LFS) to explore the relationship between age and
salaries in the UK. Specifically we will seek to answer the following research question: Are salaries directly
proportional to years of experience? To explore this we will use polynomial regression and also LOESS curves.

Exercise 1. Academic Salaries
Let’s start by accessing the academic salaries data, which is available in the car library.
library(car)
data(Salaries)
summary(Salaries)

In the bonus exercise last week I used this dataset to explore the gender gap in the academic sector. We
found that ‘sex’ is not statistically significant after controlling for some other relevant factors. One of the
factors we considered was ‘yrs.since.phd’. Much like what we observed for the case of ‘sex’, the explanatory
variable ‘yrs.since.phd’ appear to be correlated with ‘salary’ when using simple bivariate analyses.
cor(Salaries$salary, Salaries$yrs.since.phd)

The correlation is positive, which make sense, higher experience/seniority provide higher salaries. Specifically,
we can estimate that for every additional year after the phd was obtained academic salaries go up by $985.
model1 = lm(salary~yrs.since.phd, data=Salaries)
summary(model1)

##
## Call:
## lm(formula = salary ~ yrs.since.phd, data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84171 -19432 -2858 16086 102383
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 91718.7 2765.8 33.162 <2e-16 ***
## yrs.since.phd 985.3 107.4 9.177 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27530 on 395 degrees of freedom
## Multiple R-squared: 0.1758, Adjusted R-squared: 0.1737
## F-statistic: 84.23 on 1 and 395 DF, p-value: < 2.2e-16

However, once we control for other variables like ‘rank’, the effect of ‘yrs.since.phd’ is not significant anymore.
model2 = lm(salary~rank+discipline+sex+yrs.since.phd, data=Salaries)
summary(model2)

##
## Call:
## lm(formula = salary ~ rank + discipline + sex + yrs.since.phd,
## data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67451 -13860 -1549 10716 97023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67884.32 4536.89 14.963 < 2e-16 ***
## rankAssocProf 13104.15 4167.31 3.145 0.00179 **
## rankProf 46032.55 4240.12 10.856 < 2e-16 ***
## disciplineB 13937.47 2346.53 5.940 6.32e-09 ***
## sexMale 4349.37 3875.39 1.122 0.26242
## yrs.since.phd 61.01 127.01 0.480 0.63124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22660 on 391 degrees of freedom
## Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401
## F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

It is possible that ‘yrs.since.phd’ does not have a significant effect on ‘salary’. This is what we would have
concluded based on our analysis. However, there is one specific assumption that we are violating, linearity,
leading to a problem of misspecification in our model, which in turn has got the potential to bias our regression
coefficients and measures of uncertainty.

Let’s look into this. As a rule of thumb, whenever you are interested in the relationship between continuous
variables, always complement your exploratory analysis with scatter-plots so you can anticipate any potential
non-linear relationships.
library(ggplot2)
ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point()
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What do you think? Does the relationship between ‘salary’ and ‘yrs.since.phd’ look linear? You can explore
this visually by drawing the linear line of best fit and assessing whether some observations seem to be
systematically over/under-estimated at different segments of the range of ‘yrs.since.phd’.
ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() +

stat_smooth(method="lm", formula=y~x, size = 1, se=FALSE) #This is an additional
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#layer to your ggplot to draw a straight line of best fit.

It looks like our linear model overestimates the salaries of academics under 10 years of experience and those
over 45 (or so), and perhaps tends to underestimate the salaries for those in between. This looks suspiciously
like a quadratic (non-linear) relationship. To explore that we can request a quadratic line of best fit based
on polynomial regression. Notice that the quadratic effect is introduced in the formula below within I(),
this command specifies that ˆ is to be understood mathematically, i.e. as the sign for the exponent. This is
necessary since within the lm() function ˆ is used to perform different programming functions.
ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() +

stat_smooth(method="lm", formula=y~x+I(xˆ2), size=1, se=FALSE)
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Ok, this looks much better. Clearly not a perfect fit to the data but much closer than before. Still, the line
is rather horizontal and the curvature is not massive. In order to test whether such quadratic effect was
certainly an improvement we can look at the significance of the quadratic term and at the typical measures
of goodness of fit. If only the coefficient for X is significant but the coefficient for X2 is not, we can take
the effect as purely linear, if both are significant then we can claim the effect is quadratic. If only X2 is
significant, then this can be a lot trickier to interpret.
summary(model1)

##
## Call:
## lm(formula = salary ~ yrs.since.phd, data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84171 -19432 -2858 16086 102383
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 91718.7 2765.8 33.162 <2e-16 ***
## yrs.since.phd 985.3 107.4 9.177 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27530 on 395 degrees of freedom
## Multiple R-squared: 0.1758, Adjusted R-squared: 0.1737
## F-statistic: 84.23 on 1 and 395 DF, p-value: < 2.2e-16
model3 = lm(salary~yrs.since.phd + I(yrs.since.phdˆ2), data=Salaries)
summary(model3)

##
## Call:
## lm(formula = salary ~ yrs.since.phd + I(yrs.since.phd^2), data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -64228 -18329 -1535 14744 103649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65051.172 3949.715 16.470 <2e-16 ***
## yrs.since.phd 4075.903 364.819 11.172 <2e-16 ***
## I(yrs.since.phd^2) -63.739 7.246 -8.797 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25200 on 394 degrees of freedom
## Multiple R-squared: 0.3111, Adjusted R-squared: 0.3076
## F-statistic: 88.95 on 2 and 394 DF, p-value: < 2.2e-16

The difference between models once we account for the quadratic effect is remarkable. The Adjusted R-squared
goes from 0.174 to 0.308. Notice that such improvement has not been achieved by adding new information,
only by relaxing the linearity assumption invoked in ‘model 3’ using a quadratic effect from a variable that
was already in the model, by simply going from Y = β0 + β1X + e to Y = β0 + β1X + β2X2 + e. We can also
see that the specific effect of ‘yrs.since.phd’ changes importantly. To interpret this we are going to proceed to
specify a better model, where we control for other relevant factors, ‘Model 4’.
summary(model2)

##
## Call:
## lm(formula = salary ~ rank + discipline + sex + yrs.since.phd,
## data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67451 -13860 -1549 10716 97023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67884.32 4536.89 14.963 < 2e-16 ***
## rankAssocProf 13104.15 4167.31 3.145 0.00179 **
## rankProf 46032.55 4240.12 10.856 < 2e-16 ***
## disciplineB 13937.47 2346.53 5.940 6.32e-09 ***
## sexMale 4349.37 3875.39 1.122 0.26242
## yrs.since.phd 61.01 127.01 0.480 0.63124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22660 on 391 degrees of freedom
## Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401
## F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16
model4 = lm(salary~rank+discipline+sex+yrs.since.phd+I(yrs.since.phdˆ2), data=Salaries)
summary(model4)

##
## Call:
## lm(formula = salary ~ rank + discipline + sex + yrs.since.phd +
## I(yrs.since.phd^2), data = Salaries)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -62956 -13315 -1405 9831 96306
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60378.762 5329.187 11.330 < 2e-16 ***
## rankAssocProf 5551.081 5033.353 1.103 0.27077
## rankProf 34100.878 6184.019 5.514 6.38e-08 ***
## disciplineB 14199.904 2331.061 6.092 2.68e-09 ***
## sexMale 5233.598 3860.948 1.356 0.17604
## yrs.since.phd 1512.625 565.503 2.675 0.00779 **
## I(yrs.since.phd^2) -25.037 9.508 -2.633 0.00879 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22490 on 390 degrees of freedom
## Multiple R-squared: 0.4569, Adjusted R-squared: 0.4485
## F-statistic: 54.68 on 6 and 390 DF, p-value: < 2.2e-16

In ‘model 2’ the effect of ‘yrs.since.phd’ was not significant. This has changed now that we are specifying
a non-linear effect. Ok, but what is now the specific effect of ‘yrs.since.phd’? When we have a quadratic
effect we cannot interpret it as simply as we do for linear effects. We cannot say the coefficient represents ‘by
how much Y changes for a one unit change in X, holding all other explanatory variables constant’ since the
effect of x on Y will now vary across the range of values of X. Instead, what we can do is describe such effect
‘visually’ using plots, ‘qualitatively’ using words, and ‘quantitatively’ using reference categories. For all of
those options it helps to predict the outcome (Ŷ ) first, using the non-linear effects obtained in our model.

Taken estimates of ‘salary’ based on our model to be defined as:

Ŷ = β̂0 + β̂1AssocProf + β̂2rankProf + β̂3disciplineB + β̂4Male + β̂5years.since.phd + β̂6years.since.phd2.

We can use β̂0 + β̂5years.since.phd + β̂6years.since.phd to predict salaries for a specific reference category,
i.e. that specific case defined when all explanatory variables included in the model equal 0. In our case,
the reference category will be a female assistant professor working in a discipline A. We proceed to predict
salaries based on our model for the range of ‘yrs.since.phd’ values contemplated in our sample (1 to 56).
yrs.since.phd = 1:56 #The range of yrs.since.phd in our dataset.
Yhat = model4$coefficients[1] + model4$coefficients[6]*yrs.since.phd +

model4$coefficients[7]*yrs.since.phdˆ2 #The estimated salary for different
#levels of yrs.since.phd.

pred = as.data.frame(cbind(yrs.since.phd, Yhat)) #Combining yrs.since.phd and predicted
#salaries into the same dataset so we can plot them together.

ggplot(pred, aes(x=yrs.since.phd, y=Yhat)) + geom_line()
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Based on the above plot we can describe the effect of ‘yrs.since.phd’ as positive, increasing at a diminishing
rate for every additional year up to roughly 30 years, when the highest value is reached, after that point the
effect becomes negative at an increasing rate for every additional year. If we want to be more concrete and
provide the specific effect of ‘yrs.since.phd’ we will need to refer to a specific range of values. For example,
we could estimate that, holding everything else constant, salary increases by roughly $5450 when the number
of years since obtaining the phd goes from 1 to 5 years.
Yhat5 = model4$coefficients[1] + model4$coefficients[6]*5 + model4$coefficients[7]*5ˆ2
Yhat1 = model4$coefficients[1] + model4$coefficients[6]*1 + model4$coefficients[7]*1ˆ2
Yhat5 - Yhat1

## (Intercept)
## 5449.603
#You can also do the following so the output looks a bit tidier.
Yhat5_1 = Yhat5 - Yhat1
names(Yhat5_1) = "Difference in salary 1 to 5 years after PhD"
Yhat5_1

## Difference in salary 1 to 5 years after PhD
## 5449.603

Now, many academics never retire and keep working until their death bed. Question: Can you use our model4
to predict the salary for someone like John Bannister Goodenough (2019 Nobel Prize in Chemistry), who
obtained his phd at the age of 30 and in 2019 was 97 years old?
Yhat67 = model4$coefficients[1] + model4$coefficients[6]*67 + model4$coefficients[7]*67ˆ2
Yhat67

## (Intercept)
## 49332.1

Does this prediction make sense? An academic with 67 years of experience is earning less than someone who
just got their phd? This example illustrates one of the main issues affecting parametric regression (which can
be loosely understood as regression models where effects of explanatory variables are pre-established based
on a given functional form, be that linear, quadratic, log-linear, etc.). Extrapolating beyond the range of a
given sample should be done carefully. We need to use common sense and consider whether the cases to be
predicted could realistically be derived from the sample we are using. This is particularly problematic when
using quadratic functions, which can increase/decrease at an accelerated rate as we approach their tails, so it
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can be quite misleading to extrapolate beyond the sample range.

Theoretically, it does not make sense to see negative salaries, or even salaries decreasing at an accelerated
rate past 30 yeas since obtaining a phd, as suggested by our model. I would expect that such reduction in
salaries flattens out at one point, so salaries stay positive. We could explore that hypothesis using polynomial
regression, in particular we could include a cubic term to allow for a second point of inflection in the
relationship between ‘yrs.since.phd’ and ‘salary’. Question: Would you know how to expand Model 4 to do
so? Hint: you just need to include one more polynomial term for ‘yrs.since.phd’. As for the quadratic term,
you can use the I() function for the new cubic term to be added.
model5 = lm(salary~rank+discipline+sex+yrs.since.phd+I(yrs.since.phdˆ2)+

I(yrs.since.phdˆ3), data=Salaries)
summary(model5)

##
## Call:
## lm(formula = salary ~ rank + discipline + sex + yrs.since.phd +
## I(yrs.since.phd^2) + I(yrs.since.phd^3), data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62707 -13369 -1298 9525 94275
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68805.1532 7050.1899 9.759 < 2e-16 ***
## rankAssocProf 11484.4941 5985.9782 1.919 0.0558 .
## rankProf 40640.9614 7138.0574 5.694 2.45e-08 ***
## disciplineB 14171.6497 2324.2491 6.097 2.60e-09 ***
## sexMale 4703.7794 3860.5898 1.218 0.2238
## yrs.since.phd -519.1300 1251.4977 -0.415 0.6785
## I(yrs.since.phd^2) 56.2123 45.6749 1.231 0.2192
## I(yrs.since.phd^3) -0.9567 0.5261 -1.818 0.0698 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22430 on 389 degrees of freedom
## Multiple R-squared: 0.4615, Adjusted R-squared: 0.4518
## F-statistic: 47.62 on 7 and 389 DF, p-value: < 2.2e-16

We can see that the new cubic term is not significant, so we would fall back to model 4 as our best model.
However, as we saw last week, this sample of academic salaries is quite small, and specific to one particular
American college. We are now going to proceed to assess whether using the LFS (a bigger and more
generalisable sample) we can figure out the concrete form of the relationship between age and salaries, for
which we might be able to do better than assuming they are linearly or quadratically related.

Exercise 2. UK Salaries
Download the LFS file from Minerva into a folder in your computer.
load("lfs.rda")

This is a huge dataset, so, as we did last week, we are going to start by trimming it down. We will keep
a small set of variables, 8 in total, and discard the other 755. The variables to be used are ‘SEX’, ‘AGE’,
‘SC10MMJ’ (major occupation group), ‘EMPMON’ (number of months continuously employed), ‘TRVTME’
(usual home to work travel time in minutes), ‘TTUSHR’ (total usual hours worked including overtime),
‘QUAL_1’ (degree level qualification), ‘GRSSWK’ (gross weekly pay in main job).
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vars = c("SEX","AGE","SC10MMJ","EMPMON","TRVTME","TTUSHR","QUAL_1","GRSSWK")
lfs = lfs[vars]
summary(lfs)

## SEX AGE
## Does not apply: 0 Min. : 0.00
## No answer : 0 1st Qu.:18.00
## Male :49392 Median :39.00
## Female :52667 Mean :38.17
## 3rd Qu.:57.00
## Max. :99.00
##
## SC10MMJ EMPMON
## Does not apply :54664 Min. : -9.00
## Professional Occupations : 9021 1st Qu.: -9.00
## Associate Professional and Technical Occupations: 6406 Median : -9.00
## Administrative and Secretarial Occupations : 5498 Mean : 45.01
## Elementary Occupations : 5219 3rd Qu.: 62.00
## Skilled Trades Occupations : 5203 Max. :792.00
## (Other) :16048
## TRVTME TTUSHR QUAL_1 GRSSWK
## Min. : -9.000 Min. :-9.00 Does not apply: 0 Min. : -9.00
## 1st Qu.: -9.000 1st Qu.:-9.00 No answer : 0 1st Qu.: -9.00
## Median : -9.000 Median :-9.00 No :85959 Median : -9.00
## Mean : 3.058 Mean :11.42 Yes :16100 Mean : 44.29
## 3rd Qu.: 10.000 3rd Qu.:38.00 3rd Qu.: -9.00
## Max. :180.000 Max. :97.00 Max. :15692.00
##

We should also trim down the number of cases in the dataset by removing those with missing data in any of
the variables. Often missing cases are coded as non-sensical negative values since this allows to differentiate
for different types of missingness (e.g. -9 for those who were not asked the question, -8 for those who declined
to provide an answer, etc.), which is something that cannot be done if all missing cases are set as NA.
lfs = lfs[which(lfs$GRSSWK>-1),]
lfs = lfs[which(lfs$SC10MMJ!="Does not apply"),]
lfs = lfs[which(lfs$EMPMON>-1),]
lfs = lfs[which(lfs$TTUSHR>-1),]
table(lfs$TRVTME, useNA="ifany")
#There are 687 cases left with missing information for TRVTME.
#Since there are only 19 who report taking 0 minutes to travel to work,
#here I am just going to assume that those with TRVTME=-9 represent people working from home.
lfs$TRVTME = ifelse(lfs$TRVTME==-9, 0, lfs$TRVTME)

Ok, let’s now get deeper into the exploratory analysis by looking at potential non-linear relationships between
‘GRSSWK’, ‘AGE’ and any other continuous variables in our sample.
ggplot(lfs, aes(x=AGE, y=GRSSWK)) + geom_point()

9



0

5000

10000

15000

20 40 60 80
AGE

G
R

S
S

W
K

There is one outlier above £15,000 that is pulling the y-axis up. Question: Can you get rid of that case and
rerun the ggplot so we can visualise the relationship between ‘GRSSWK’ and ‘AGE’ better? Hint: You can
see how we did that for negative cases of ‘GRSSWK’ above.
lfs = lfs[which(lfs$GRSSWK<10000),]
ggplot(lfs, aes(x=AGE, y=GRSSWK)) + geom_point()
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Removing the outlier allows compressing the y-axis in the plot, which in turn helps us assess whether the
relationship between age and salary could be non-linear (possibly quadratic). Question: To have a better
idea of whether that is the case, can you add a straight and a quadratic line of best fit to the ggplot? Hint1:
To do so you can add the stats_smooth() function that we used in Exercise 1. Hint2: to request a linear or a
quadratic function you need to change the formula option.
ggplot(lfs, aes(x=AGE, y=GRSSWK)) + geom_point() +

stat_smooth(method="lm", formula=y~x, size = 1)
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ggplot(lfs, aes(x=AGE, y=GRSSWK)) + geom_point() +
stat_smooth(method="lm", formula=y~x+I(xˆ2), size = 1)
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It seems that the quadratic model offers a better fit than the linear model, although it is not perfectly clear.
This is because the sample size is so huge that it is difficult to visualise where most points lay. In addition,
we can see how the quadratic model might introduce the non-sensical estimations of negative salaries that we
observed for the academic sector data, perhaps a second point of inflexion at the tail of the age distribution
might help. We should keep in mind all this information that we are gathering from our exploratory analysis
to inform our modelling strategy.

Let’s do that now, model the effect of age on salaries, which we can do while while controlling for other
relevant factors (potential confounders). To do so we have to take a look at the distribution of ‘GRSSWK’,
our outcome variable. We learnt last week how this distribution is right-skewed, which is why we should first
log-transform it, so the model’s residuals will be roughly normally distributed.
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lfs$log_GRSSWK = log(lfs$GRSSWK)
hist(lfs$log_GRSSWK)
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Question: Can you test whether including a quadratic effect of age on log-salaries provides a better fit of
the data than simply representing that relationship linearly? Hint: Estimate a model for ‘log_GRSSWK’
including ‘AGE’, but also potential confounders that you can control for. Then estimate another model where
you introduce a quadratic term for ‘AGE’, to do so you can use I(), as we did in Exercise 1. Question: Would
you also add a cubic term? Hint: To test this you can expand the quadratic model by including a cubic term
using I() again. In order to assess which is the better model you can check the adjusted R2, and whether
the additional terms added to the model are statistically significant and strong enough to be considered
consequential. Remember that if in doubt the more parsimonious model should be preferred.

We specify a first model including only linear effects, which we take as a benchmark.
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model1 = lm(lfs$log_GRSSWK ~ SEX+QUAL_1+AGE+EMPMON+TRVTME+TTUSHR+SC10MMJ, data=lfs)
summary(model1)

All the variables included are significant (the only exception being ‘Associate Professional and Technical
Occupations’, one of the categories for ‘SC10MMJ’). Let’s now extend the model considering the non-linear
effect observed in the exploratory analysis.
model2 = lm(lfs$log_GRSSWK ~ SEX+QUAL_1+AGE+I(AGEˆ2)+EMPMON+TRVTME+TTUSHR+SC10MMJ,

data=lfs)
summary(model2)

Both ‘AGE’ and ‘AGEˆ2’ are significant, and the adjusted R2 goes from 0.701 to 0.722. So, we can conclude
that the quadratic effect provides a better fit. However, as we saw in the previous exercise, it does not really
make sense to think of negative salaries, or even an accelerated rate of decrease in the effect of age. Adding a
cubic effect would solve that problem by adding another point of inflection, let’s see if that is the case.
model3 = lm(lfs$log_GRSSWK ~ SEX+QUAL_1+AGE+I(AGEˆ2)+AGE+I(AGEˆ3)+EMPMON+TRVTME+

TTUSHR+SC10MMJ, data=lfs)
summary(model3)

Again, the model is improved although this time only marginally so. The three terms in the polynomial
function for ‘AGE’ are significant, but the adjusted R2 only goes from 0.722 to 0.723. If facing this situation,
and if my research goal was not centered around the estimation of the effect of age on salaries (say for
example, if my interest was on the gender gap), I would probably drop the cubic term and keep the simpler
quadratic effect. However, if the research question was to ascertain the effect of age, I would definitely keep
the cubic term as it provides a more accurate estimate. I would also proceed to report the age effect visually
as we did in the previous exercise
range(lfs$AGE)
age = 16:82
model3$coefficients
Yhatc = exp(model3$coefficients[1] + model3$coefficients[4]*age +

model3$coefficients[5]*ageˆ2 + model3$coefficients[6]*ageˆ3)
pred = as.data.frame(cbind(age, Yhatc))
ggplot(pred, aes(x=age, y=Yhatc)) + geom_line()
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The cubic part of the effect is not massive, but sufficient to provide a more realistic representation of the
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overall effect of age on salaries, particularly at the end of the age range. Compare this to the estimations
based on the quadratic effect.
model2$coefficients
Yhatq = exp(model2$coefficients[1] + model2$coefficients[4]*age +

model2$coefficients[5]*ageˆ2)
pred = as.data.frame(cbind(age, Yhatq))
ggplot(pred, aes(x=age, y=Yhatq)) + geom_line()
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We have seen that the effect of age on log-salaries is not linear, but we have only tested two non-linear
functions (quadratic and cubic), how do we know one of this is the line of best fit? We could consider
other non-linear functions based for example on a log transformation of ‘AGE’, or even based on the use of
exponential functions on a different base, e.g. 0.5 or 1.5. We could try some of these different functions one
by one, or we could also rely on a more computationally intensive, data-driven (non-parametric) approach,
based on LOESS.

LOESS can be used for one or a short number (normally no more than four) explanatory variables, and for
that reason is normally used in exploratory analysis. A simple way to use it is through the stat_smooth
function from ggplot that we have already employed. Only now we will substitute the specification of a given
function (above we specified a quadratic function using ggplot), for a span value. Remember that LOESS fits
multiple regressions throughout different local neighborhoods. The size of the neighborhood can be controlled
using the span argument, which ranges from 0 to 1. The greater the value of span the smoother the fitted
curve will be, i.e. the closer to a linear model.

Deciding on the right level of span can be tricky. Remember that there is a trade-off between precision and
accuracy. The higher the span the bigger the sample size to be used in each neighbourhood, hence the higher
the level or precision (i.e, the smaller the standard errors). But at the same time, the higher the span the
smoother the line of best fit will be, hence, the harder it will be to detect changes in the relationship between
X and Y . Let’s go back to the academic salaries data (based on a much smaller sample than the LFS), to
illustrate this point. Let’s obtain a first LOESS curve with a span of 0.5.
ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() +

stat_smooth(method="loess", span=0.5, size = 1)
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Notice how, unlike what we established before, the effect does not seem to be entirely quadratic. Notice as
well how the confidence interval varies across the range of X. That is reflecting the number of observations
available at each of the neighbourhoods defined by the level of span. This feature matters, polynomial
regression will be wrongly assuming that standard errors and confidence intervals will remain uniform across
the whole sample. LOESS offers a more realistic depiction of the level of uncertainty in areas where we do
not have too many cases, which in our case would be translated in being a lot more cautious about making
claims and predictions regarding the effect of age on salaries near the right-end of the range of age. Let’s now
use a span of 0.25 and 0.75 to assess visually the trade-off between precision and accuracy present in LOESS
models.
ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() +

stat_smooth(method="loess", span=0.25, size = 1)
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ggplot(Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() +
stat_smooth(method="loess", span=0.75, size = 1)
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The former identifies a series of bumps along the x-axis but these are probably not that informative. In
addition, the level of precision is higher in the latter. So, I would probably go with a span from 0.5 to 0.75.

Now, this is a great exploratory tool, but we have seen repeatedly throughout the course how (when using
observational data, i.e. non-experimental data) the relationship between two variables is often confounded
by third factors. To embed a ‘LOESS-type’ function for one or a number of explanatory variables while
controlling for other relevant variables we need to use generalised additive models (GAMs). In addition, these
models can also be used when the outcome variables is binary, a count variable or for any other non-normal
distribution. To learn more about GAMs have a look at this tutorial from Anish Singh.

Preparation for next week’s workshop
Next week we will see how to analyse time-series. Specifically, we will learn how to explore time-series and
estimate ARIMA models. We will do so step by step first, using a dataset on bike sharing, and then we
will move on to automatise the modelling process using a data-driven approach, auto.arima, which will be
employed to test whether the sentencing guidelines have increased sentence severity in England and Wales.
There is a lot of new material that we will be covering here, which will make the practical a bit longer than
usual. As always, take a look at the lecture and see if you can follow the instructions in the practical, as far
as you can reach. See you next week.
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