
Workshop 9 - Longitudinal Data

JPS

Introduction
We are going to explore one of the longitudinal data modelling approaches presented in the lecture: growth
curve models. In essence these are multilevel models applied to longitudinal data. As such, most of the
procedures that we will use today were also used last week, which is why for today’s practical you are required
to take more of a lead, unlike last week, where full guidance was provided.

In today’s exercise we will use sentencing data from the Czech Republic. This data is truly unique since it
is the first dataset where sentences are linked to the judges who imposed them chronologically. This allow
us to explore changes in the sentencing practice across judges as they progress in their career. A research
question explored in Drápal & Pina-Sánchez (2022). Here, we will replicate some of the analyses undertook
in that paper to model changes in severity (measured as the probability of imposing a custodial sentence)
throughout roughly the first 1,000 cases sentenced by different judges from the Czech Republic since they join
the judiciary. This analysis will allow us to assess whether judges become harsher or more lenient through
their careers, while at the same time allowing us to measure changes in between-judge disparities across time.
These between-judge characteristics are problematic as they make the system less transparent and consistent.
Using longitudinal data we will be able to see whether sentencing practices of judges converge across time, as
it should be expected if they communicate and learn from each other.

Modelling Judicial Trajectories
We start by importing the data, which is saved as a .csv file.
judges = read.csv("judgesCZ.csv")

The original data could be classified as sensitive so I have trimmed it extensively to ensure that it is fully
anonymised. In addition, I have prepared the variables that we are going to use, so no data cleaning is
required this time. Still, it is always a good idea to get started with an exploratory analysis, even if brief, to
assess what is in the dataset.
summary(judges)

## range prevconv female judge_sentence
## Min. :-1.16358 Min. :-0.276906 Min. :0.0000 Min. :0.0010
## 1st Qu.:-0.49691 1st Qu.:-0.276906 1st Qu.:0.0000 1st Qu.:0.2410
## Median :-0.49691 Median :-0.176906 Median :0.0000 Median :0.5350
## Mean :-0.03034 Mean : 0.001873 Mean :0.1542 Mean :0.6419
## 3rd Qu.: 0.16976 3rd Qu.: 0.123094 3rd Qu.:0.0000 3rd Qu.:0.9550
## Max. :10.50309 Max. : 1.723094 Max. :1.0000 Max. :2.0580
## NA's :4
## judge_ID custody
## Min. :4000 Min. :0.0000
## 1st Qu.:4072 1st Qu.:0.0000
## Median :4110 Median :0.0000
## Mean :4110 Mean :0.1414
## 3rd Qu.:4163 3rd Qu.:0.0000
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## Max. :4191 Max. :1.0000
##
length(unique(judges$judge_ID))

## [1] 33

We have eight variables: ‘range’ captures the recommended sentence length for the offence type according to
the Czech criminal code, which we can use as a proxy for offence type, this variable was recorded originally
in months, but here it has been divided by ten and centered around the mean (this process helps simplify
the computational process); ‘prevconv’, indicating the number of previous convictions, which has also been
centered around the mean; ‘female’, indicating whether the offender is a woman or a man; ‘judge_sentence’
indicating the order in which each judge imposed the sentences recorded (this has not been centered around
its mean to facilitate its interpretation but it has been divided by 1,000 so the range is comparable with that
of other continuous variables used in the model); ‘judge_ID’ to differentiate by judge presiding over each
sentence; and ‘custody’ indicating whether a custodial sentence was imposed or not.

The longitudinal dimension of the dataset stems from the 22,412 sentences imposed by 33 judges (‘judge_ID’).
Given the different levels of experience for the judges used in the sample, and as a result of some of the
trimming processes that I undertook to prepare the dataset, the distribution of the number of the sentences
seen by each judge varies importantly. Growth curve models can handle this issue under the assumption that
the missing segments of individual trajectories are missing at random.
#The following line creates a dataset with the number of sentences recorded by each
#judge.
count = as.data.frame(table(judges$judge_ID))
names(count) = c("judge_ID", "n")
count
summary(count$n) #The number of cases seen by each judge.
library(ggplot2)
#We can plot this to see the number of cases processed by each judge visually.
ggplot(data=count, aes(x=as.character(judge_ID), y=n)) + geom_bar(stat="identity",

color="black", fill="white") + coord_flip() + labs(x="judge",
y="number of sentences imposed")
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#We can also plot the distribution of cases seen by judges in our sample.
ggplot(count, aes(x=n)) + geom_histogram(binwidth=100, color="black", fill="white") +

labs(y="judges", x="number of sentences imposed")
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We can see how the mean number of cases processed by judge is around 679, but that distribution is rather
right-skewed, with more than 10 judges seeing less than 500 cases, and four judges seeing more than 1250.
This uneven distribution is not ideal since those four judges will have a stronger influence in the estimation
of trajectories to be explored in our models.

Let’s move now to the modelling phase. We want to explore whether judges become harsher or more lenient
through their careers. Additionally, we will try to assess whether differences between judges disparities become
more or less pronounced across time. I would divide this into three different steps, in order of complexity:

1. First, we could specify a standard logistic model to determine whether the number of cases imposed
has an influence on sentence severity (the probability of imposing custodial sentences).

2. Then, we can use a random intercepts model to assess whether there are meaningful between-judge
disparities in the use of such penalty, i.e. whether there are judges systematically harsher or more lenient
than others. This involves thinking of longitudinal data as hierarchical data. In this case, sentences will
be the level-1 unit and judges the level-2, i.e. sentences are clustered within judges.

3. Lastly, we can specify a random slopes model for the variable ‘judge_sentence’ to explore whether those
judge disparities shrink or expand as judges become more experienced, i.e. as they sentence more cases.

Question: Do judges sentence more harshly or more leniently as they acquire more experience? Hint1:
Estimate a logit model for ‘custody’ using all the other variables in the ‘judges’ dataset as explanatory
variables. Hint2: you can use glm with family=binomial to do so.
logit = glm(custody ~ range + prevconv + female + judge_sentence,

family="binomial", data=judges)
summary(logit)

##
## Call:
## glm(formula = custody ~ range + prevconv + female + judge_sentence,
## family = "binomial", data = judges)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.06970 0.03887 -53.253 < 2e-16 ***
## range 0.58021 0.01842 31.493 < 2e-16 ***
## prevconv 2.72608 0.05482 49.724 < 2e-16 ***
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## female -0.29047 0.07280 -3.990 6.61e-05 ***
## judge_sentence -0.15631 0.04622 -3.382 0.000721 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 18268 on 22407 degrees of freedom
## Residual deviance: 14266 on 22403 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 14276
##
## Number of Fisher Scoring iterations: 5

So, as could be expected ‘range’ and ‘prevconv’, indicating more serious offences and more persistent offending,
are associated with a higher probability of receiving a custodial sentence; similarly female offenders tend to
commit less serious crimes, which is reflected by a negative coefficient. The most interesting part is that our
main variable of interest, ‘judge_sentence’ shows a negative and statistically significant effect. This means
that judges tend to become more lenient with experience. Specifically, after 1,000 cases processed, compared
to the moment when a judge imposes their first sentence, the odds ratio of imprisonment is. . .
exp(summary(logit)$coefficients[5,1])

This seems pretty substantial; using the reference category we can also calculate the probabilities of receiving
a custodial sentence at those two time points in the judicial career. To define this reference category we can
use the average offence type (range = 0) committed by a male offender (female=0) with an average number
of previous convictions (prevconv = 0). That is, we just need to consider the regression coefficients for the
intercept and ‘judge_sentence’ as all others are set to zero. Lastly, remember that to go from an odds ratio
to a probability we use the following equation, Odds/(1+Odds).
#The probability of imposing a custodial sentence for a judge with no experience is
#calculated using the intercept, which means experience is set at 0.
exp(summary(logit)$coefficients[1,1]) / (1+exp(summary(logit)$coefficients[1,1]))

## [1] 0.1120772
#The probability of imposing a custodial sentence for a judge that has imposed 1000
#sentences. Remember that we divided the number of cases by 1000, so an increment of
#1 represents 1000 cases.
exp(summary(logit)$coefficients[1,1]+summary(logit)$coefficients[5,1]) /
(1+exp(summary(logit)$coefficients[1,1]+summary(logit)$coefficients[5,1]))

## [1] 0.09743935

Using these comparison of reference categories we can put effect sizes in context a little more clearly, and
see how the leniency effect attributed to experience is not really that dramatic. Still, it is interesting to see
how the sentencing process is not entirely deterministic, there are discrepancies that can be attributed to
non-legal factors such as the stage of the career of the judge imposing the sentence. To assess the extent of
between-judge disparities, i.e. differences in severity between judges, we can extend this model by including a
random intercepts term. This model can take some time to compute as the addition of random effects makes
it considerably more complex.

Question: Are there between-judge disparities in the use of custodial sentences? Hint1: You can add random
intercepts to your previous logit model using the command glmer (from library lme4 ) and specifying that
‘judge_ID’ is the variable that captures the level-2 clusters, as follows, + (1|judge_ID). Hint2: To answer the
question you can compare the standard deviation of the random intercept (within the ‘Random effects’ part
of the model’s output) to the size of the intercept, or you could also take a look at the random intercept
estimated for each judge, which can be obtained using coef(‘model_name’), as we did last week.
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library(lme4)
RI = glmer(custody ~ range + prevconv + female + judge_sentence +

(1|judge_ID), family="binomial", data=judges)
summary(RI)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: custody ~ range + prevconv + female + judge_sentence + (1 | judge_ID)
## Data: judges
##
## AIC BIC logLik deviance df.resid
## 13851.1 13899.2 -6919.6 13839.1 22402
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.6710 -0.3385 -0.2272 -0.1594 7.0107
##
## Random effects:
## Groups Name Variance Std.Dev.
## judge_ID (Intercept) 0.2509 0.5009
## Number of obs: 22408, groups: judge_ID, 33
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.09979 0.09627 -21.811 < 2e-16 ***
## range 0.59535 0.01899 31.347 < 2e-16 ***
## prevconv 2.77357 0.05656 49.038 < 2e-16 ***
## female -0.35872 0.07422 -4.833 1.34e-06 ***
## judge_sentence -0.26703 0.05626 -4.746 2.07e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) range prvcnv female
## range -0.056
## prevconv -0.119 0.200
## female -0.084 0.003 0.126
## judge_sntnc -0.264 -0.111 -0.073 -0.024

Notice how now all the standard errors are larger than in the previous model. This is a result of having
adjusted for the within cluster correlation (sentences within judges), which were left unadjusted in our
previous model (we assumed sentences are independent). We can also see that some regression coefficients
have also changed by a few decimal points, due to the different estimation method undertaken in this model,
but in general all regression coefficients related to the fixed part of the model are quite similar to what we
observed before.

The most interesting part of this model is its random part. We can see that the standard deviation of the
random intercepts term is 0.50; but what does that mean? Widespread between-judge disparities, or relatively
negligible differences? As we learnt in the previous workshop, we can get the intercept for each judge using
coef, and the specific random effect for each judge using ranef.
coef(RI)
ranef(RI)
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This between-judge variability looks rather substantive. For example, notice how the second and third to last
judges have got intercepts (-2.82 and -0.86) roughly 50% smaller and larger than the model’s intercept (-2.10).
To obtain a clearer view of the magnitude of these between-judge disparities we can estimate the probability
of imposing a custodial sentence for each judge using just the intercept, that is, when ‘judge_sentence’ is
equal to zero, and we are considering the average offence type, number of previous convictions and a male
offender.
#Estimating an average probability of imposing a custodial sentence for each judge
#based on their respective random intercepts.
prob = exp(coef(RI)$judge_ID[,1]) / (1 + exp(coef(RI)$judge_ID[,1]))
summary(prob) #The between-judge disparities in the use of custodial sentences

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04918 0.07972 0.10637 0.11843 0.14892 0.29661
#range from 0.05 to 0.30, that is remarkable, probably higher than desirable.
prob = as.data.frame(prob) #I turn this into a dataset so it can be plotted with ggplot.
names(prob) = "intercept" #Prove more meaningful labels.
#Plotting the between-judge disparities.
ggplot(prob, aes(x=intercept)) + geom_histogram(binwidth=0.05, color="black", fill="white") +

xlim(0,1) + labs(x = "probability of a custodial sentence", y = "number of judges")
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As anticipated, the between-judge disparities are quite substantial, with some judges being more punitive
than others. To assess how those disparities look like after judges become more experienced we can compare
the probabilities that we have estimated to a new set of probabilities by judge after they have sentenced their
first 1,000 cases.
#Calculating judges' average use of custody after having sentenced 1000 cases.
#We are only expanding what we did above by incorporating the coefficient for
##judge_sentence' from the 'RI' model.
prob2 = exp(coef(RI)$judge_ID[,1] + coef(RI)$judge_ID[,5]) /

(1 + exp(coef(RI)$judge_ID[,1] + coef(RI)$judge_ID[,5]))
#As before we turn these probabilities into a dataset so we can plot them with ggplot.
prob2 = as.data.frame(prob2)
names(prob2) = "intercept2"
#We create a dataset composed of a variable capturing the two set of probabilities
#estimated, another variable indicating whether the probability is from the judge
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#when she is unexperienced or experienced, and another variable listing the 33 judges.
lineplot = data.frame(exp=factor(rep(c("Inexperienced", "Experienced"), each=33),

levels=c("Inexperienced", "Experienced")),
judge=rep(1:33, 2), prob=c(prob$intercept, prob2$intercept2))

#We change the type of ggplot to a lineplot so we can compare the probabilities at
#judge_sentence=0 and at judge_sentence=1.
ggplot(data=lineplot, aes(x=exp, y=prob, group=judge)) + geom_line() + geom_point()
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We see that the probability of imposing custodial sentences is lower for all judges after they become more
experienced, but that is because we are assuming that such effect is constant across judges. To test whether
that is the case we need to estimate a random slopes model. It also appears that the range of between judge
disparities is narrower when judges become more experienced, but that is just the result of pushing the
average custody for each judge closer to 0, i.e. when modelling probabilities there is a floor effect at 0 (and a
ceiling effect at 1) that makes it harder to observe differences the closer we are to those values compared to
probabilities lying closer to the middle point, 0.5. Again, remember that we are still assuming that the effect
of ‘judge_sentence’ is constant across judges.

Question: Do between-judge disparities shrink as judges become more experienced? Is this effect statistically
significant and meaningful? Hint1: You can explore this question by expanding our previous random intercepts
model including a random slopes term, you can do that changing the random part of the model, so, in our case:
(1 + ‘variable_name’|judge_ID). Hint2: To test whether the random slopes term is statistically significant
you can run a likelihood ratio test. Remember from last week that you will need first to load the library
lmtest, then you will need the command, lrtest(model1, model2). Hint3: To interpret whether the random
slopes term is meaningful you can take a look at the standard deviation of the random intercept compare
it to that of the standard deviation of the random slope (does it seem remarkable?), and the correlation
between these two terms (is it positive, negative, large or small?). The answer to our research question (do
between-judge disparities shrink or grow as judges become more experienced?) can be derived from that
correlation term. Lastly, see if you can plot the between-judge disparities for judges when they start their
careers and when they have processed one thousand cases using the above lineplot as a template. Specifically,
you will need to estimate ‘prob’ and ‘prob2’ as we did before, with the only difference that now these need to
be derived from your new random slopes model, as we did last week. Once you have those, you can simply
put them together in the same dataset as we did above (we called it ‘lineplot’), and run the same ggplot code.
RS = glmer(custody ~ range + prevconv + female + judge_sentence +

(1 + judge_sentence|judge_ID), family="binomial", data=judges)
summary(RS)
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coef(RS)

Looking at the fixed part of the model the first thing to notice is that ‘judge_sentence’ is not significant
anymore, this is likely due to the within cluster correlation not being perfectly accounted for with the simpler
random intercepts specification. On the random part of the model we can also see that the standard deviation
for the random intercepts term remains quite substantial (even bigger than before), and so is the standard
deviation for the random slopes. If we want to make sure that this random slopes term is significant we can
run a likelihood ratio test
library(lmtest)
lrtest(RI, RS)

And of course, it is significant. Those random slopes disparities appear to be massive, indicating that although
the average effect of ‘judge_sentence’ is not statistically significant (i.e. the average effect of experience is not
significantly different from zero), there is evidence pointing at very different trajectories followed by individual
judges. In considering whether those different trajectories will converge (reducing the judge disparities that
we observed in our previous model) or diverge (increasing those judge disparities), we can get an important
clue from the correlation between the random intercepts and random slopes terms. This is negative, meaning
that judges with a higher than average intercept (those who initially were harsher) will be associated with a
negative experience effect (will become more lenient as they become more experienced), and the other way
around, those judges with a lower than average intercept (those that were initially more lenient) will be
associated with a positive experience effect (will become harsher as they become more experienced). We can
see this visually as follows:
prob = exp(coef(RS)$judge_ID[,1] ) / (1 + exp(coef(RS)$judge_ID[,1]))
summary(prob)
prob = as.data.frame(prob)
names(prob) = "intercept"
prob2 = exp(coef(RS)$judge_ID[,1] + coef(RS)$judge_ID[,5]) /

(1 + exp(coef(RS)$judge_ID[,1] + coef(RS)$judge_ID[,5]))
prob2 = as.data.frame(prob2)
names(prob2) = "intercept2"
lineplot = data.frame(exp=factor(rep(c("Inexperienced", "Experienced"), each=33),

levels=c("Inexperienced", "Experienced")),
judge=rep(1:33, 2), prob=c(prob$intercept, prob2$intercept2))

ggplot(data=lineplot, aes(x=exp, y=prob, group=judge)) + geom_line() + geom_point()
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This is an important finding. Even though experience does not seem to have a fixed effect on sentence severity,
it does produce a really interesting effect in diminishing between court disparities. It seems that judges, as
they sentenced more and more cases, become more in tune with each other. When I think of this it doesn’t
surprise me, when marking student essays as part of a module teaching team it is absolute essential to discuss
the marking procedure before and after seeing one or a few essays, otherwise I tend to note between-marker
disparities. Going back to judicial decision-making, this finding has got important implications for sentencing
policy since it seems there are procedures that could be taken into consideration to enhance consistency
in sentencing without having to rely on prescriptive sentencing guidelines, which are often considered too
intrusive and could undermine the principle of individualisation.

Now, putting things into perspective, our sample is huge but we have only looked at 33 judges. In addition,
it is possible that our results are also affected by selection bias if those judges for whom we can see their
trajectories for a much longer timespan are different from judges for which we can only see how they operate
for a short timespan. Plenty of additional work needs to be done on those two fronts, but this is an interesting
start.
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