

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Researching Crime and Justice Session 12: Descriptives Stats and Graphs Lecture

Jose Pina-Sánchez

Session Goals

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- The session is divided in a lecture, a tutorial, and a quiz
- Here, in the lecture we will provide a general recap of basic concepts of data analysis
 - What is a variable and their levels of measurement
 - $-\,$ Descriptive statistics such as the mean, standard deviation, or correlation coefficients

Session Goals

- Tables such as frequency tables and crosstabs
- Graphs, considering style guidelines
- In the tutorial we will practice data analysis using SPSS
 - We will explore empirical research questions
 - Using real data, the teaching version of the CSEW

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- This lecture and the ensuing practical will prepare you for our first quiz
 - 10 multiple-choice questions
 - About topics covered in this lecture
 - And reproducing exercises from the practical
 - Using SPSS and data from the Crown Court Sentencing Survey
 - You need to get at least 5 correct answers
 - Really simple, you can use the notes from this session
 - No preparation is necessary other than engaging actively with the content covered in this session
 - No questions on graphs are included in the quiz

Quiz

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- The key building blocks in quantitative data analysis are:
 - <u>Cases</u> the units composing a population or sample, normally represented by rows in spreadsheets, e.g.
 Students registered at the University of Leeds
 Streets composing the city of Leeds

First Steps in Data Analysis

 <u>Variables</u> - an element or feature of a given population or sample, normally represented by columns in spreadsheets, e.g. Nationality, gender, age, etc. of Leeds students Number of crimes recorded, street-lights, traffic, etc. in the streets of Leeds

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- The key building blocks in quantitative data analysis are:
 - <u>Cases</u> the units composing a population or sample, normally represented by rows in spreadsheets, e.g.
 Students registered at the University of Leeds
 Streets composing the city of Leeds

First Steps in Data Analysis

- <u>Variables</u> an element or feature of a given population or sample, normally represented by columns in spreadsheets, e.g. Nationality, gender, age, etc. of Leeds students
 Number of crimes recorded, street-lights, traffic, etc. in the streets of Leeds
- We cannot study the information provided for each case one by one
 - In quantitative research samples tend to be big
 - Instead we seek to summarise that information for the whole sample (or a subgroup of it)
 - That's the essence of most quantitative data analysis

(DateCatt) IDM CDCC Castistics Data Edit

Extracting Information from a Dataset

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

2		, 🖕 r	ช \overline		P H			ا 💽 🖉				
	so rowlabel	🗞 split	💰 sex	💰 yrsarea	💰 resyrago	🗞 work2	_{tenure1}	🗞 livharm1	💰 agegrp7	🗞 ethgrp2a	뤚 educat3	🗞 rural
1	137068050.0	1.00	2.00	7.00		1.00	2.00	3.00	4.00	1.00	4.00	1
2	147461190.0	3.00	2.00	6.00		2.00	1.00	1.00	5.00	1.00	4.00	2
3	137116250.0	1.00	2.00	7.00	2.00	2.00	4.00	6.00	5.00	1.00	4.00	1
4	147354190.0	3.00	2.00	7.00		1.00	2.00	1.00	5.00	1.00	2.00	1
5	137061230.0	3.00	2.00	7.00		2.00	4.00	6.00	6.00	1.00	1.00	2
6	136898230.0	3.00	2.00	7.00		2.00	1.00	1.00	6.00	1.00	2.00	1
7	135507330.0	1.00	1.00	6.00		1.00	4.00	1.00	4.00	1.00	1.00	1
8	136450220.0	2.00	2.00	5.00		1.00	1.00	1.00	5.00	1.00	4.00	1
9	136111200.0	4.00	1.00	7.00		2.00	1.00	1.00	5.00	1.00	4.00	2
10	136599250.0	1.00	1.00	7.00		2.00	1.00	1.00	7.00	1.00	3.00	2
11	136229130.0	1.00	1.00	4.00		1.00	2.00	3.00	2.00	1.00	4.00	1
12	136947260.0	2.00	1.00	5.00		2.00	1.00	1.00	7.00	1.00	3.00	1
13	147438230.0	3.00	2.00	7.00		2.00	4.00	1.00	7.00	1.00	1.00	2
14	136318080.0	4.00	1.00	7.00		1.00	1.00	1.00	4.00	3.00	2.00	1
15	137011300.0	2.00	2.00	7.00		2.00	1.00	3.00	4.00	1.00	3.00	1
16	136610310.0	3.00	2.00	7.00		2.00	1.00	6.00	7.00	1.00	1.00	1
17	136602010.0	1.00	1.00	3.00		1.00	4.00	4.00	4.00	1.00	4.00	1
18	136659080.0	4.00	1.00	7.00		2.00	1.00	6.00	6.00	1.00	3.00	1
19	136613110.0	3.00	1.00	2.00	1.00	2.00	1.00	3.00	5.00	1.00	3.00	1
20	136842090.0	1.00	2.00	7.00		1.00	2.00	1.00	3.00	1.00	4.00	1
21	147439070.0	3.00	2.00	7.00		2.00	1.00	4.00	6.00	1.00	2.00	1
22	137091280.0	4.00	2.00	5.00		2.00	4.00	2.00	4.00	1.00	2.00	1
23	136044190.0	3.00	2.00	6.00		1.00	2.00	1.00	3.00	1.00	3.00	1
24	147591040.0	4.00	2.00	6.00		1.00	2.00	1.00	4.00	1.00	4.00	1
25	136941090.0	1.00	2.00	4.00		1.00	2.00	1.00	3.00	1.00	4.00	2
26	147499200.0	4.00	1.00	5.00		1.00	1.00	2.00	4.00	1.00	3.00	1
27	137000320.0	4.00	2.00	6.00		2.00	4.00	5.00	5.00	1.00	2.00	1
28	136994150.0	3.00	1.00	6.00		1.00	4.00	3.00	2.00	1.00	4.00	1
29	136088080.0	4.00	2.00	1.00	2.00	1.00	4.00	5.00	5.00	1.00	5.00	1
30	147272190.0	3.00	1.00	7.00		2.00	5.00	2.00	6.00	1.00	1.00	2
24	407007040.0	4.00	0.00	7.00	4.00	0.00	4.00		C 00	4.00	4.00	

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Choosing Data Analysis Tools

- There is a huge range of data analysis techniques
 - $-\,$ Measures of centrality, dispersion, association, regression methods, etc.
- It is key to consider which is the most suitable technique
 - $-\,$ We need to consider first the research question we want to answer
 - But also the <u>'level of measurement'</u> of the variables to be used

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

<u>Nominal</u> (aka categorical): formed by categories that cannot be ranked;

Levels of Measurement

e.g. ethnicity

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

 \blacksquare Nominal (aka categorical): formed by categories that cannot be ranked;

Levels of Measurement

- e.g. ethnicity
 - Binary (aka dichotomous): nominal with only 2 categories e.g. foreign born;

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

 \blacksquare Nominal (aka categorical): formed by categories that cannot be ranked;

Levels of Measurement

- e.g. ethnicity
 - Binary (aka dichotomous): nominal with only 2 categories e.g. foreign born;
- <u>Ordinal</u>: categories can be ranked but distance between categories is not meaningful;
 - e.g. classification in the World Cup

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

 \blacksquare Nominal (aka categorical): formed by categories that cannot be ranked;

Levels of Measurement

- e.g. ethnicity
 - Binary (aka dichotomous): nominal with only 2 categories e.g. foreign born;
- <u>Ordinal</u>: categories can be ranked but distance between categories is not meaningful;

e.g. classification in the World Cup

 <u>Scale</u> (aka continuous): values are not grouped within categories but lay on a continuous scale;

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality			
Height			
Level of education			
Days in prison			
Year of birth			
Gender			
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	\checkmark		
Height			
Level of education			
Days in prison			
Year of birth			
Gender			
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	√		
Height			\checkmark
Level of education			
Days in prison			
Year of birth			
Gender			
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	√		
Height			\checkmark
Level of education		\checkmark	
Days in prison			
Year of birth			
Gender			
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	\checkmark		
Height			√
Level of education		\checkmark	
Days in prison			√
Year of birth			
Gender			
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Nominal
NationalityNominal
✓Ordinal
ScaleNationality✓✓Height✓✓Level of education✓✓Days in prison✓✓Year of birth✓✓Gender✓✓

Police rank

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	\checkmark		
Height			\checkmark
Level of education		\checkmark	
Days in prison			\checkmark
Year of birth			\checkmark
Gender	\checkmark		
Police rank			

Session Goals _{Ouiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

	Nominal	Ordinal	Scale
Nationality	\checkmark		
Height			\checkmark
Level of education		√	
Days in prison			\checkmark
Year of birth			\checkmark
Gender	√		
Police rank		√	

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

• We can use univariate statistics to summarise the information contained in a given variable

Descriptive Statistics

- Measures of centrality to explore questions such as: What is the average number of daily crimes in Leeds? What is the most common sentence used by Crown Court judges?
- Measures of dispersion to explore questions such as:
 How variable is the crime rate across streets in Leeds?
 How consistent is sentencing in the Leeds Magistrates' Court?

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

• We can use univariate statistics to summarise the information contained in a given variable

Descriptive Statistics

- Measures of centrality to explore questions such as:
 What is the average number of daily crimes in Leeds?
 What is the most common sentence used by Crown Court judges?
- Measures of dispersion to explore questions such as:
 How variable is the crime rate across streets in Leeds?
 How consistent is sentencing in the Leeds Magistrates' Court?
- We can use bivariate statistics to summarise the relationship between two variables
 - Measures of association to answer questions such as: Is crime more prevalent in busier streets? To what extent is sentence length associated with crime seriousness?

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

• We can use univariate statistics to summarise the information contained in a given variable

Descriptive Statistics

- Measures of centrality to explore questions such as: What is the average number of daily crimes in Leeds? What is the most common sentence used by Crown Court judges?
- Measures of dispersion to explore questions such as:
 How variable is the crime rate across streets in Leeds?
 How consistent is sentencing in the Leeds Magistrates' Court?
- We can use bivariate statistics to summarise the relationship between two variables
 - Measures of association to answer questions such as: Is crime more prevalent in busier streets? To what extent is sentence length associated with crime seriousness?
- We can also use tables to answer similar questions on centrality, dispersion, and association
 - Tables are normally used for discrete (non-continuous) variables

Descriptive Statistics

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Univariate Statistics

	Nominal	Ordinal	Scale
Centrality	Mode	Mode, Median, Mean	Mode, Median, Mean
Dispersion		Range, Std. Dev.	Range, Std. Dev.

Descriptive Statistics

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Univariate Statistics

	Nominal	Ordinal	Scale
Centrality	Mode	Mode, Median, Mean	Mode, Median, Mean
Dispersion		Range, Std. Dev.	Range, Std. Dev.

Bivariate Statistics

	Nominal	Ordinal	Scale
Nominal	Cramer's V	Cramer's V	
Ordinal	Cramer's V	Spearman's ρ	Spearman's ρ
Scale		Spearman's ρ	Pearson's r

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Univariate Stats: Measures of Centrality

• Measures of Centrality

- Mode: the value that occurs most frequently;
 It does not rely on an existing ranking of values
- Median: if we rank cases of a variable, it is the value lying in the middle;

It is not affected by outliers (i.e. extreme values)

Mean: the sum of all the values divided by the number of cases;
 By far the most commonly used statistic;
 Capable of weighting the distance between values

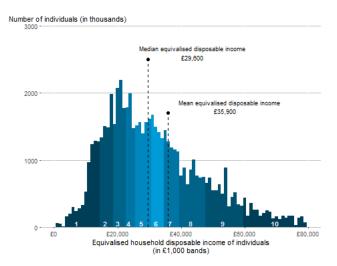
Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables


Graphs

Style Guidelines

Recap

Univariate Stats: Measures of Centrality

Distribution of household disposable income in the UK in 2019

Source: ONS

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guideline

Recap

Univariate Stats: Measures of Dispersion

- Measures of dispersion
 - Range: difference between the highest and lowest values
 Useful to establish the range of a variable and to detect extreme values
 - Standard deviation: the average dispersion from the mean More representative of the overall dispersion in a given variable

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Univariate Stats: Measures of Dispersion

• Measures of dispersion

- Range: difference between the highest and lowest values
 Useful to establish the range of a variable and to detect extreme values
- Standard deviation: the average dispersion from the mean More representative of the overall dispersion in a given variable
- Remember the measure of inconsistency in sentencing reported by BBC News?
 - What measure of dispersion did they use there?
 - And how did that affect to interpret the level of dispersion?

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Univariate Stats: Measures of Dispersion

Prison sentence 'disparity' warning

() 22 April 2013 UK

Some magistrates' courts in England and Wales are four times more likely to send offenders to prison than others, a penal reform charity has said.

In 2011, Northamptonshire courts gave custodial sentences in 6.5% of cases, compared with 1.5% in Warwickshire, research by the Howard League shows.

<

The Howard League says community sentences are cheaper than custody and deliver better results

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- We will distinguish between Pearson's and Spearman's correlation coefficients
 - They are interpreted similarly, as a measure of how much and in which direction are two variables associated
 - The former is used when both variables are scale, the latter is used if at least one of the variables is ordinal
 - They can range from -1 (negatively associated) to 1 (positively associated), with a value of 0 representing no association

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- We will distinguish between Pearson's and Spearman's correlation coefficients
 - They are interpreted similarly, as a measure of how much and in which direction are two variables associated
 - $-\,$ The former is used when both variables are scale, the latter is used if at least one of the variables is ordinal
 - They can range from -1 (negatively associated) to 1 (positively associated), with a value of 0 representing no association
- Question: What correlation coefficient would you expect between...
 - Sentence length (number of months in custody) and seriousness of the offence?

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- We will distinguish between Pearson's and Spearman's correlation coefficients
 - They are interpreted similarly, as a measure of how much and in which direction are two variables associated
 - $-\,$ The former is used when both variables are scale, the latter is used if at least one of the variables is ordinal
 - They can range from -1 (negatively associated) to 1 (positively associated), with a value of 0 representing no association
- Question: What correlation coefficient would you expect between...
 - Sentence length (number of months in custody) and seriousness of the offence?
 - What about between sentence length and the number of mitigating factors considered by the judge?

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

- We will distinguish between Pearson's and Spearman's correlation coefficients
 - They are interpreted similarly, as a measure of how much and in which direction are two variables associated
 - $-\,$ The former is used when both variables are scale, the latter is used if at least one of the variables is ordinal
 - They can range from -1 (negatively associated) to 1 (positively associated), with a value of 0 representing no association
- Question: What correlation coefficient would you expect between...
 - Sentence length (number of months in custody) and seriousness of the offence?
 - What about between sentence length and the number of mitigating factors considered by the judge?
 - What would be the correlation between sentence length and level of education of the offender?

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Frequency Tables

Tables

Nominal	Ordinal	Scale
1	1	

$\operatorname{Cross-tabs}$

	Nominal	Ordinal	Scale
Nominal	1	1	1
Ordinal	1	1	1
Scale	1	1	

Tables

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Frequency table

		Count
experience of any crime in the previous 12 months	not a victim of crime	9318
	victim of crime	2358

Tables

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Frequency table

		Count
experience of any crime in the previous 12 months	not a victim of crime	9318
	victim of crime	2358

Cross-tab

		Respondent sex	
		male	female
		Count	Count
experience of any crime in the previous 12 months	not a victim of crime	4228	5090
	victim of crime	1079	1279

Tables

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Frequency table

		Count
experience of any crime in the previous 12 months	not a victim of crime	9318
	victim of crime	2358

Cross-tab

		Respondent sex	
		male	female
		Count	Count
experience of any crime in the previous 12 months	not a victim of crime	4228	5090
	victim of crime	1079	1279

<u>Question</u>: Is there a relationship between gender and victimisation? What would you do to facilitate the interpretation of the second table?

Session Goals Quiz

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

• Graphs can be really informative

- Can be used to explore the above (centrality, dispersion, association)
- And present findings more effectively: 'A picture is worth a thousand words'
- We have seen how the level of measurement of variables is key in your choice of tables and descriptive stats
- The same applies to graphs, which can also be classified in univariate and bivariate

Graphs

Graphs: Levels of Measurement

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

One-Dimensional Figures

Nominal	Ordinal	Scale	
Bar/Piecharts	Bar/Piecharts & Hist.	Hist. & Density Function	

Session Goals

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Graphs: Levels of Measurement

One-Dimensional Figures

Nominal	Ordinal	Scale	
Bar/Piecharts	Bar/Piecharts & Hist.	Hist. & Density Function	

Two-Dimensional Figures

	Nominal	Ordinal	Scale
Nominal	Bar/Piecharts	Histograms	Boxplot
Ordinal	Histograms		Box/Scatterplot
Scale	Boxplot	Box/Scatterplot	Scatterplot

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graph

Style Guidelines

Recap

• Pictures are very useful means to convey information

• However, they should be used sensibly, consider the following rules of thumb:

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

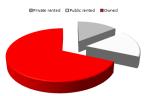
- Pictures are very useful means to convey information
- However, they should be used sensibly, consider the following rules of thumb:
 - Graphs need to 'stand on their own', i.e. ought to be understood without having to read the text

- Hence, good labels, titles and captions are essential
- Do not include graphs to convey information that could be put more succinctly in text or a table
- $-\,$ Do not dedicate more than 1/3 of the space a page to tables and graphs, repeatedly
- Avoid using unnecessary effects
- Be as transparent and honest as possible

Session Goals _{Quiz}

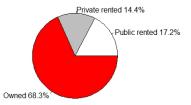
Data Analysis Intro/Recap

Levels of Measurement


Descriptive Statistics

Tables

Graph


Style Guidelines

Recap

Style Guidelines

Piechart of Tenure

Style Guidelines

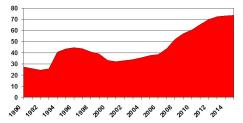
Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables


Graphs

Style Guidelines

Recap

<u>Question</u>: Would you use this graph to show that debt has reached a historical high?

Percentage of National Debt over GDP

Style Guidelines

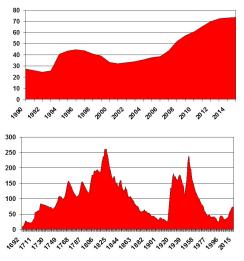
Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables


Graphs

Style Guidelines

Recap

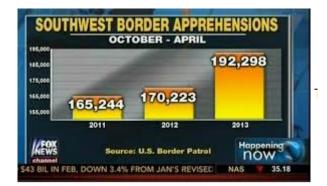
<u>Question</u>: Would you use this graph to show that debt has reached a historical high?

Percentage of National Debt over GDP

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement


Descriptive Statistics

Tables

Graphs

Style Guidelines

Recap

Session Goals _{Quiz}

Data Analysis Intro/Recap

Levels of Measurement


Descriptive Statistics

Tables

Graph

Style Guidelines

Recap

Session Goals Quiz

Data Analysis Intro/Recap

Levels of Measurement

Descriptive Statistics

Tables

Graphs Style Guideline

Recap

• We have learnt some key concepts of data analysis

- The different levels of measurement used in variables
- Various univariate and bivariate statistics
- Tables and graphs
- To review and learn more about the content of today's session - See Bryman (2016) Chapter 16
- To prepare for the tutorial you will need to install SPSS
 - See instructions on how to do so in the latest announcement on Minerva

Recap

- In our next session we are going to keep practising SPSS
 - But the focus will be on statistical inference
 - To prepare for it read Bryman (2016) Chapter 15